

A Virtual Upgrade Validation Method for
Software-Reliant Systems

Dio de Niz
Peter Feiler
David P. Gluch
Lutz Wrage

June 2012

TECHNICAL REPORT
CMU/SEI-2012-TR-005
ESC-TR-2012-005

Research, Technology, and System Solutions Program
ttp://www.sei.cmu.edu

This material is based upon work funded and supported by the U.S. Army Program Executive Office, Aviation of the

U.S. Aviation and Missile Research, Development, and Engineering Center of the U.S. Department of Defense and under

Contract No. FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software Engineering

Institute, a federally funded research and development center sponsored by the United States Department of Defense.

Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do

not necessarily reflect the views of the U.S. Army Program Executive Office, Aviation of the U.S. Aviation and Missile

Research, Development, and Engineering Center or the United States Department of Defense.

This report was prepared for the

SEI Administrative Agent

ESC/CAA

20 Schilling Circle, Bldg 1305, 3rd floor

Hanscom AFB, MA 01731-2125

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS

FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY

KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO,

WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS

OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY

WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT

INFRINGEMENT.

This material has been approved for public release and unlimited distribution except as restricted below.

Internal use:* Permission to reproduce this material and to prepare derivative works from this material for internal use is

granted, provided the copyright and “No Warranty” statements are included with all reproductions and derivative works.

External use:* This material may be reproduced in its entirety, without modification, and freely distributed in written or

electronic form without requesting formal permission. Permission is required for any other external and/or commercial

use. Requests for permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu.

* These restrictions do not apply to U.S. government entities.

® Architecture Tradeoff Analysis Method, ATAM, and Carnegie Mellon are registered in the U.S. Patent and
Trademark Office by Carnegie Mellon University.

TM Carnegie Mellon Software Engineering Institute (stylized) and the stylized hexagon are trademarks of
Carnegie Mellon University.

.

CMU/SEI-2012-TR-005 | i

Table of Contents

Executive Summary vii

Abstract ix

1 Background 1

2 Introduction 5

3 Challenges in Software-Reliant System Upgrades 7
3.1 Brief Introduction to Software-Reliant System Architecture 7
3.2 Importance of Operational Quality Attributes (OQAs) 8
3.3 Implications of Mismatched Assumptions 9
3.4 Root Cause Areas of System-Level Faults 11

3.4.1 End-to-End Flow of Data Streams 11
3.4.2 Distributed Communicating State Machines 13
3.4.3 Virtualized Resources 14
3.4.4 Resource Availability 15
3.4.5 Other Quality Dimensions and Root Cause Areas 16

4 Virtual Upgrade Validation (VUV): Method Overview 17
4.1 The VUV Method and the Architecture Dependencies Catalog (ADC) 17
4.2 Steps and Artifacts of the VUV Method 18
4.3 Summary of the Steps of the VUV Method 19

5 Application of VUV by Example 23
5.1 Step 1: Describe the Upgrade 23
5.2 Step 2: Describe Relevant Operational Quality Attributes and System Properties 24
5.3 Step 3: Identify Changes in the Computer System 26
5.4 Step 4: Identify Architectural Dependencies 26
5.5 Step 5: Model and Analyze Original System 27
5.6 Step 6: Model and Analyze Changed System 28
5.7 Step 7: Revise the System Upgrade 29

6 Architectural Dependencies Catalog 33
6.1 Application Categories to Application Patterns 34
6.2 Application Categories to OQA-Related System Properties 35
6.3 Modeling Requirements for Application Patterns 35
6.4 Modeling Requirements of Relevant System Properties 37

7 AADL Modeling and Analysis Strategies 39
7.1 Application Pattern Modeling Strategies 39

7.1.1 Control Loops 39
7.1.2 State Transition Communication 42
7.1.3 Sensor/Signal Fusion 43
7.1.4 Message Processing and Fusion 44
7.1.5 Replication 44
7.1.6 Shared Data Communication 45
7.1.7 System Partitioning 46

7.2 OQA Modeling Strategies 47
7.2.1 Hard Deadlines 47

CMU/SEI-2012-TR-005 | ii

7.2.2 Soft Deadlines 47
7.2.3 End-to-End Deadlines 48
7.2.4 Latency Jitter 48
7.2.5 Throughput and Utilization 48
7.2.6 Reliability and Availability 48
7.2.7 Security 49

7.3 Computer System Resource Management 50
7.3.1 Bounds on Priority Inversion 50
7.3.2 Bound on CPU Stall Induced Worst-Case Execution Time (-) Inflation 51
7.3.3 Rate Group Schedulability Margin 52

8 Broader Applicability 53

9 Conclusion 55

Appendix: Modeling with the SAE AADL 57
SAE AADL: The Language 57
Modeling Application Components 60
Modeling the Computer Platform 61

Glossary of Acronyms 63

Bibliography 65

CMU/SEI-2012-TR-005 | iii

List of Figures

Figure 1-1: Late Discovery of System-Level Problems 3

Figure 3-1: Three Elements of Software-Reliant Mission-Critical Systems 7

Figure 3-2: Example of an Embedded Software System 8

Figure 3-3: Implications of Mismatched Assumptions 10

Figure 4-1: Focused Modeling via Architectural Dependencies Catalog 17

Figure 4-2: Steps and Artifacts of the VUV Method 19

Figure 4-3: A Sample Utility Tree 20

Figure 4-4: Step 4 ADC Procedure 21

Figure 4-5: Analysis Practice Framework Summary 22

Figure 5-1: Control Surfaces on an Aircraft 23

Figure 5-2: An Example of Execution Platform Changes 24

Figure 5-3: New Runtime Architecture for Automatic Trimming 25

Figure 5-4: Base Model 28

Figure 5-5: Modified Model Using New Computer System 29

Figure 5-6: Deterministic Communication 30

Figure 5-7: Final Refinement 31

Figure 7-1: Observer and Guard Redundancy Pattern 45

Figure 7-2: Resource Contention on PCI Bus 51

CMU/SEI-2012-TR-005 | iv

CMU/SEI-2012-TR-005 | v

List of Tables

Table 4-1: Steps of the VUV Method 18

Table 5-1: Application Component Properties of the Base Model 28

Table 5-2: Computer Platform Properties 28

Table 5-3: System Component Properties of the Modified Architecture 29

Table 5-4: Properties of First Refinement 31

Table 5-5: Properties of the Final Refinement 32

Table 6-1: Application Category to Patterns 34

Table 6-2: Application Category to OQA-Related System Properties 35

Table 6-3: Modeling Requirements for Application Patterns 36

Table 6-4: Modeling Requirements of Relevant System Properties 37

Table 9-1: Component Categories 58

Table 9-2: Interactions and Component Features 59

CMU/SEI-2012-TR-005 | vi

CMU/SEI-2012-TR-005 | vii

Executive Summary

The work presented in this report was performed by the Carnegie Mellon® Software Engineering
Institute (SEI) for the Army Strategic Software Improvement Program (ASSIP) and sponsored by
the Army Program Executive Office (PEO) Aviation. This report presents a Virtual Upgrade
Validation (VUV) approach to improving design quality and confidence in qualification through
testing for military systems impacted by computer platform upgrades. This approach uses
architecture-centric, model-based analysis to identify system-level problems early in the upgrade
process to complement established test qualification techniques. For purposes of this report, the
authors focus on changes to the computer platform consisting of processor, network, operating
system, or runtime infrastructure.

Helicopters and airplanes in military use today are operational well beyond their original life
spans and typically are facing multiple platform upgrades as part of technology refresh cycles.
Changes to the computer platform tend to be particularly risky because the embedded software
makes many assumptions about the computer system. For example, software may have been
developed for a federated architecture in which each software component is assumed to run on a
dedicated, special processor using a cyclic executive as its runtime executive. The static nature of
the task execution order may not be guaranteed on other computer platforms, affecting the
execution order and timing. The emergence of the Integrated Modular Avionics (IMA)
architecture provides the benefit of increased flexibility for growth of mission capability by
utilizing a distributed computer system as a common computing platform. However, migration to
this computer resource can have side effects not anticipated by the original embedded software
application. For example, applications originally scheduled using a cyclic executive may now
execute based on preemptive scheduling paradigms. As a result, the various control systems in the
aircraft may encounter latency jitter and race conditions, due to nondeterministic sampling, that
are difficult to detect through testing techniques. In one such case, the pilot experienced random
blurring of the tracking symbol on his display screen due to latency jitter, which was traceable to
nondeterministic sampling under certain processor load conditions [Feiler 1998]. This example
illustrates that even planned upgrades to well-known standards-based architectures, such as
Aeronautical Radio Incorporated (ARINC)653, can have impactful, unintended side effects.

The U.S. Army has traditionally qualified systems and components by similarity, analysis, test,
demonstration, or examination. Furthermore, current test approaches to achieving confidence in
systems’ airworthiness for the U.S. Army are based on traditional federated avionics systems
[Boydston 2009]. The most common approach to dealing with platform change today is to port
the code to the new platform and regression test exhaustively. Testers hope that the regression
tests provide sufficient coverage for discovering time-sensitive faults as observable defects.

The migration to IMA architectures, the exponential growth in software size and complexity, the
increased role of software in the system, and the increasing pace of changes have introduced new
hazards [Leveson 2004] that the current “build then test” approach struggles to detect—leading to
testing until budgets are exhausted or the testers have run out of testing time. While extensive

® Carnegie Mellon is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

CMU/SEI-2012-TR-005 | viii

regression testing is a key part of the verification process for platform changes, regression testing
alone is not effective in achieving the desired level of confidence when embedded software is
executing in an integrated system.

As a recent study of best practices and the state of the art has concluded, advances in architecture
research offer a way of addressing this problem [Feiler 2008b]. The VUV method, presented in
this report, uses an industry standard modeling notation, the SAE International1 Architecture
Analysis and Design Language (AADL), and leverages its well-defined semantics in a model-
based approach to analyze the impact of platform-related changes [SAE 2004].

The value of the VUV approach is that it helps military programs improve design quality and
testing efficiency, and it enables the early discovery of problems for platform-related software
changes. The VUV approach improves the quality of the design because it models the specific
changes related to the platform change, rather than involving testers who run a suite of regression
tests until they feel they have probably covered everything. This approach increases confidence in
the design changes and prevents unintended side effects from popping up in the test phase. The
VUV method improves the efficiency of qualification testing in this way: an architecture model
that is developed for analysis and evaluation early in the software life cycle incrementally evolves
to reflect platform upgrades. Developers can thus analyze models’ upgrade alternatives at design
time, rather than waiting for an implementation to be tested on the new platform. Finding
problems early reduces rework, which shortens the testing qualification cycle and reduces
development cost and schedule [Feiler 2009a].

The VUV method has been applied in a pilot project to analyze the impact of a platform upgrade
on the software for an Apache helicopter. The application of the VUV method and the findings of
this pilot project will be the subject of a separate report.

1 SAE international was formerly known as the Society of Automotive Engineers.

CMU/SEI-2012-TR-005 | ix

Abstract

This report presents a Virtual Upgrade Validation (VUV) method to improve design quality and
confidence in qualification through testing for military systems impacted by computer platform
changes. This approach uses of architecture-centric, model-based analysis to identify system-level
problems early in the upgrade process to complement established test qualification techniques.
For purposes of this report, the authors focus on changes to the computer platform consisting of
processor, network, operating system, and runtime infrastructure. They describe the VUV method
steps and introduce the Architectural Dependencies Catalog, which provides guidance for
modelers on which aspects of the system to model and how to model them. The report also
provides a history and overview of the Architecture Analysis and Design Language standard,
which is used with the VUV method.

CMU/SEI-2012-TR-005 | x

1 | CMU/SEI-2012-TR-005

1 Background

This section provides background on the SAE International2 Architecture Analysis and Design
Language (AADL) standard, which is the standard of the proposed Virtual Upgrade Validation
(VUV) method. This section provides a brief history of the standard, an overview of the standard,
some research work by the Carnegie Mellon® Software Engineering Institute (SEI) that feeds into
the proposed method, and industry initiatives that are utilizing the AADL standard.

In the 1990s, the Defense Advanced Research Projects Agency (DARPA) invested in software
architecture research because it recognized the need to understand increasing system complexity
in terms of software and hardware component interactions. During that time, several architecture
description languages emerged; these had well-defined semantics to support quantitative analysis
of a range of operational quality attributes.3 In particular, MetaH was developed by the Honeywell
Technology Center for use on avionics systems and for the first time applied to a missile guidance
system at the Army Missile Research, Development, and Engineering Center (AMRDEC) in
1994. The success of this research, combined with the need felt by the Avionics/Aerospace
industry, resulted in the development of the SAE AADL as an international industry standard.
Following its initial publication in November 2004, the standard underwent revision in January
2009 and January 2011, based on feedback from several industrial pilot projects [SAE 2004,
2009, 2011].

The focus of the AADL standard is to support architecture modeling, quantitative analysis, and
validation of embedded software systems. In particular, AADL defines a set of concepts with
well-defined semantics for describing the task and communication architecture of the embedded
software, the computer system platform, and the interface to the system and its environment, such
that the operational quality attributes that are crucial for embedded real-time system (such as
timing, throughput, safety, and reliability) can be analyzed. Furthermore, the standard suite
includes a standardized interchange format that supports the interfacing of various analysis tools
and exchange of AADL models between different development teams such as the system
integrator and its suppliers. Because AADL is an embedded-system-specific architecture
description standard with well-defined semantics, developers do not interpret AADL models
differently and thus avoid communication mismatches.

Due to continued interest in learning the reasons for system failure, in 2007 and 2008 the SEI
investigated the following question: “Why do system-level failures still occur despite our best
design methods and fault tolerance techniques being deployed in systems?” In this study, the SEI
examined several system-level failures in a variety of safety-critical systems in the aviation and
space domain. Feiler identified four architectural root cause areas for these failures [Feiler 2009b]:

1. end-to-end flow of time-sensitive data

2 SAE International was formerly known as the Society of Automotive Engineers.

® Carnegie Mellon is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

3 Operational quality attributes (OQAs) describe nonfunctional properties of the software system, such as
performance, safety, and reliability, as they relate to runtime concerns. OQAs will be discussed later in this
report.

2 | CMU/SEI-2012-TR-005

2. distributed communicating of state machines

3. virtualized resources

4. resource availability

The study also investigated an appropriate architecture-modeling notation and analytical
frameworks that support discovery of such problems through an architecture-centric, model-based
approach early in the development and upgrade process [Feiler 2010, Feiler 2008a, de Niz 2008b,
Hansson 2008, Mohan 2009]. The information gained in these studies was central to developing
the method documented in this report.

Recent studies confirm that a paradigm shift towards analysis and formal validation at the
architecture level to complement testing must occur to meet the challenges of time-sensitive,
software-reliant systems with high safety and reliability demands:

• General Accounting Office (GAO) Space-Based Software Study highlighting the reality of
more testing than planned (exhausting versus exhaustive testing) due to the increasingly
complex interactions between system components [GAO 2008]

• NASA Software Complexity Study on flight software growth and complexity, and the need
for integration of fault prevention, detection, and containment with nominal system operation
[NASA 2009a]

• Leveson Study on the role of software in spacecraft accidents [Leveson 2004]

• National Research Council (NRC) Study by the Committee for Certifiably Dependable
Software Systems addressing the issue of sufficient evidence for software for dependable
systems through analysis and formal validation [Jackson 2007]

The Army Strategic Software Improvement Program (ASSIP) organization became interested in
AADL in 2007. ASSIP formed an Integrated Product Team to research problems and solutions for
real-time, safety-critical, embedded (RTSCE) systems and invited the SEI to give a presentation
on the benefits of AADL. In that presentation, Peter Feiler stated that AADL modeling could help
in finding problems early in complex, embedded software.

The SEI then followed with an ASSIP-funded study of the state of best practice and emerging
technology to support model-based engineering of embedded systems [Feiler 2008b].
Recognizing the need for predictive architectural analysis, a number of industry initiatives using
AADL have invested in the development of an architecture-centric, model-based approach to
engineering their software-reliant systems. This trend has culminated in an aerospace industry-
wide, four-phase practice improvement initiative called System Architecture Virtual Integration
(SAVI). The U.S. Army has been a participant in this initiative, which in 2009 completed the
proof of concept phase [Feiler 2009a]. In addition, NASA funded an SEI AADL IV&V study that
provides support artifacts such as templates for analysis reports and process scripts [NASA
2009b].

Data from member companies of SAVI, such as Boeing, Airbus, and Lockheed Martin, show that
the size of source lines of code (SLOC) has doubled every four years and it is predicted that by
2014 the cost of 27 million SLOC of software will exceed $10 billion. Industry data shows that
70% of faults are introduced early in the life cycle, while 80% of faults are not caught until
integration test or later. These faults carry a repair cost of 110 times or more at system operation

3 | CMU/SEI-2012-TR-005

than if they had been caught early in the life cycle. If we can discover a portion of these late
system-level faults earlier in the development process, we can expect considerable cost savings
[Feiler 2009a]. Figure 1 shows percentages of fault introduction, discovery, and cost of repair
[Feiler 2009a].

Figure 1-1: Late Discovery of System-Level Problems

The benefits described above, along with findings from other workshops and reports, ultimately
led to ASSIP’s decision to support this work on behalf of the Army Program Executive Office
Aviation (PEO-AVN). The work consists of the development of the VUV method, the subject of
this report, and its pilot application to an Army aviation system.

The Apache Block Upgrade III (AB3) was the chosen candidate for an initial VUV case study.
This study illustrates the value of model-based engineering (MBE) with AADL in the context of
architecture assessments and evaluations; models developed during the MBE activities of an
Architecture Tradeoff Analysis Method® (ATAM®) assessment of AB3 were reused in the VUV
case study. This MBE/ATAM case study is the subject of the SEI special report SEI-SR-021-2008
to the Army, titled An AADL-Based Analysis of Apache, in December 2008.

The AADL, along with compatible MBE tool suites such as the SEI Open-Source AADL Tool
Environment (OSATE), provides the means to investigate ATAM risk themes through realistic
modeling and analyses of complex architectures and the means to explore and evaluate various
risk reduction/mitigation paths and multiple solutions to prioritized stakeholder scenarios. AADL
MBE provides the system project office or prime contractor with powerful and cost/schedule-
effective methods to model and evaluate multiple design solutions early in the design—reducing
technical risk, high cost, and schedule delay due to late discovery of system-level problems.

The VUV method focuses the AADL-based MBE approach used during the ATAM specifically to
investigate potential issues arising from a migration to a new computing platform during a
technology refresh. The case study application of VUV to AB3 allows us to illustrate the ability to

® Architecture Tradeoff Analysis Method and ATAM are registered in the U.S. Patent and Trademark Office by

Carnegie Mellon University.

4 | CMU/SEI-2012-TR-005

discover, through analysis of an AADL model, system-level problems that are traditionally
discovered through prototype implementation at much higher cost. In addition, both the AB3
Program Office and its prime contractor have been utilizing the AB3 AADL model, study data,
and available MBE tool suites to perform their own studies of the AB3 architecture.

5 | CMU/SEI-2012-TR-005

2 Introduction

This report is the first in a series of three reports developed by the SEI for the ASSIP and
sponsored by the Army PEO AVN. This first report introduces readers to the VUV method, which
is an approach to analyzing the impact on software due to platform-related changes. The second
report is a case study that applies the method described in this report to a successfully fielded
Army avionics system. The third report summarizes the outcome of the case study and provides
an assessment of the value of the VUV method to the program.

The purpose of this report is to document a method for analyzing the impact of changes to
software due to platform changes. This is a serious concern for Army avionics in large part
because aircraft remain in use for a very long time, often much longer than anticipated. Therefore,
it is likely that over a 20+-year life span, part of the platform (hardware, network, or underlying
architecture) will require replacement multiple times. For the purposes of this report, the authors
define platform changes as changes to hardware, network, and operating system (i.e., changes in
the computational infrastructure).

The migration to Integrated Modular Avionics (IMA) architectures, the exponential growth in
software size and complexity, the increased role of software in systems, and the increasing pace of
changes have introduced new hazards [Leveson 2004] that the current “build then test” approach
struggles to detect before operation—leading to testing until budgets are exhausted [Boydston
2009].

This “build then test” approach to dealing with the impact of platform change today is to port the
code to the new platform, compile it, fix any problems caused by the hardware replacement, and
then regression-test exhaustively. After the code is ported, testers run extensive suites of
regression tests in an attempt to identify problems during the test phase rather than in flight. What
the testers are really trying to do is to see if they can hammer the system with test cases in hopes
that internal problems show up as observable defects. While widespread in practice, this approach
is extremely resource-intensive and struggles to discover sources of system-level failure, such as
race conditions, unintended resource contention, and unexpected latency jitter. The result can be
rework or, worse, undetected problems that unpredictably show up in operational flight.

One of our goals for the VUV method is to discover errors that testing might miss. Rather than
calling for a suite of regression tests to be run until testers feel they have probably covered
everything, the VUV approach models the specific architectural changes related to the platform
change. The use of modeling increases confidence in the design and prevents unintended side
effects from popping up in the test phase.

Another benefit from the VUV method that improves design quality for embedded systems
changes is that the AADL allows for very precise modeling of the environment on an extremely
fine-grained scale, as needed to examine root cause areas. The VUV method uses the AADL to
develop models that describe the dependencies of the embedded application software on the
computer system with well-defined semantic meaning that enables automated analysis. The
semantics of the language guide the designer to refine architectural abstractions as necessary to
identify omissions and mismatches in these dependencies. Both the automated analysis and the

6 | CMU/SEI-2012-TR-005

precise semantics enabled by AADL models have been recognized by the academic research
community [Hugues 2008, Delange 2008, Sokolsky 2006, 2009] and by industry circles [Feiler
2009a, LaCerte 2007, Conquet 2008, Casteres 2008] as key strategies in reducing errors. Precision
in modeling is essential for analyzing changes at the embedded software layer because small
changes can have significant ramifications.

Another problem with relying on regression testing alone to analyze the impact of platform-
related change is that testers have to wait until the system is built to test it. This is too late,
according to engineers at the U.S. Army AMRDEC Aviation Engineering Directorate (AED).
Boydston describes the situation [Boydston 2009].

Waiting until Preliminary Design Review (PDR) is too late to start addressing these
considerations and may require redesign later or onerous testing during qualification that is
costly in monetary and schedule terms.

The model-based approach of VUV not only addresses the impact of upgrades analytically, but
also leads to continued use of the resulting system architectural models. The idea is that once you
have invested in developing a model, not only is it available early in the software life cycle, at
design time, so you can find problems earlier, it is also reusable over multiple platform upgrades.
The objective is to lower the cost and schedule impact of errors by reducing rework and the
likelihood of schedule overruns, thereby minimizing the number of times tests have to be applied
to the upgrade.

The three key elements of the VUV method are (1) a description of the VUV method steps, (2) an
Architectural Dependencies Catalog (ADC) and, (3) strategies for modeling the existing
application system and computer platform as well as the new platform.

This report has the following structure. Section 3 provides the context for introducing the method,
including an overview of root cause of system faults. Section 4 provides an overview of the VUV
method. Section 5 illustrates the use of the VUV method by applying it to an example and
elaborating its steps. Section 6 explains the purpose of the ADC as an important tool to the
method and presents its initial content. Section 7 discusses modeling strategies for applying the
method in modeling the application architecture, addressing key operational quality attributes in
the model, and determining resource availability in a computer platform. Section 8 outlines
broader applicability of the VUV method.

7 | CMU/SEI-2012-TR-005

3 Challenges in Software-Reliant System Upgrades

In this section, we explore issues pertaining to software-reliant system upgrades. We begin with
an overview of embedded system architecture. We follow this overview with a discussion of the
importance of understanding and managing the impact of change on OQAs. Next, we discuss how
mismatched assumptions—stemming from how an engineer believes a system works versus how
it actually works—can lead to disastrous results. Because assumption mismatch can have such
devastating ramifications, we focus the VUV method to address these areas of mismatched
assumptions.

We wrap up Section 3 with a summary of four root cause areas of mismatched assumptions and
the AADL concepts available to represent them. The root cause areas are incorporated into the
VUV method to help modelers identify and prevent common assumption-related system failures
through the ADC.

3.1 Brief Introduction to Software-Reliant System Architecture

Large-scale, software-reliant, mission-critical systems (such as aircraft, transport vehicles, or
robotic systems) are distributed real-time embedded systems. They consist of three major
architectural components: (1) the mission system and the environment in which it operates; (2) the
computer platform in the form of networked processors; and (3) the embedded application
software. Figure 3-1 illustrates these elements.

Figure 3-1: Three Elements of Software-Reliant Mission-Critical Systems

Figure 3-1 also illustrates the focus of this report: the impact of the computer platform changes
(upgrades) on the embedded application software and on the mission system. The mission system
has an architecture that system engineers develop to meet mission requirements. Typically,
computer engineers design the computer platform architecture to interface with the mission
system through sensors and actuators and to provide the resources to execute the embedded

8 | CMU/SEI-2012-TR-005

mission application software. The embedded application software is responsible for processing
observations of the environment and controlling the operation of the physical mission system,
including management of physical system component failures. The embedded software system is
deployed on the computer platform in ways that allow it to fulfill its requirements, such as
performance, safety, and reliability, despite possible computer hardware failures.

3.2 Importance of Operational Quality Attributes (OQAs)

In this section, we discuss the importance of understanding the impact of platform changes on
current and desired system qualities (e.g., performance, fault tolerance, and safety). In software
engineering, we capture requirements in terms of functional requirements and quality attribute
requirements (also often referred to as nonfunctional requirements). Functional requirements
describe the work a software system does, such as computing a value. Quality attribute
requirements describe qualities of the software system such as performance, safety, and reliability.
We refer to quality attribute requirements focused on runtime concerns as operational quality
attributes or OQAs, as explained in Section 1. OQAs are central to the VUV method because we
must understand the impact of proposed platform changes on the OQAs.

Figure 3-2: Example of an Embedded Software System

The graphic in Figure 3-2 represents a radar system that must provide updates to the position of
objects in the sky with enough frequency to allow a timely reaction to them. This graphic
represents the application software functions as three threads that are grouped into two separate
processes in the system’s runtime environment and shows how these software elements are bound
to (executing on) a single processor. For the system to meet its timeliness requirements, the
threads must complete their execution by their specified deadline and not exceed their allotted
processor execution time. The scheduling algorithm used in the operating system determines the
particular schedulability analysis technique. For example, the rate-monotonic analysis theory

Function1

Scan
sky

Build
trajectory

Thread1 Thread2 Thread3

Process1 Process2

OS: VxWorks; Scheduling: RMA; Synchronization: PCP; …

R
un

tim
e

A
rc

hi
te

ct
ur

e
C

om
pu

te
r

S
ys

te
m

Processor 1 Processor 2

Network/Bus

A
pp

lic
at

io
n

 S
W

Mission
Platform

Device

Processor

Bus

Process

Thread

Subprogram

Legend

Allocation

Connection

Filter
objects

Function2 Function3

9 | CMU/SEI-2012-TR-005

[Klein 1993] can analytically determine whether all threads meet their deadline under a fixed
priority preemptive scheduler, assuming the thread priority is assigned according to the execution
rate.

The radar system example illustrates the importance of using an architecture notation that
supports component concepts specific to embedded systems with well-defined semantics and
properties to support the validation of OQAs through analysis of an architecture model. To
validate OQAs at a specific point in the system development, the architecture model of the
computer hardware and software designed for the fielded system (i.e., the operational
architecture) must be precise enough to permit quantitative assessment. This quantitative
assessment is refined as better data describing the architecture and performance measures are
provided.

Modeling approaches for embedded systems must also allow for modeling at different levels of
abstraction. The individual characteristics of the different parts of the runtime architecture (e.g.,
worst-case execution time [WCET] of tasks) are combined with characteristics of the computer
system (e.g., processor speed and scheduling protocol) to provide a system-wide OQA (e.g., in
this case, the schedulability of the task set). At the same time, the software functions (software
development units) are built to, or assume specific services are provided by, the computer
platform. For instance, when the software sends messages between processors, the programmer
may assume a reliable communication mechanism. In the final system, these assumptions are
typically implicit and do not form part of the description in the final software artifacts (e.g.,
source code). Analysis approaches must allow for analysis of interactions of software components
in terms of the software’s task and communication architecture as it is deployed on the computer
platform and interfaces with the physical mission system to verify requirements and validate
assumptions.

The bottom line is that a good understanding of OQAs is important because violated OQAs are a
key contributor to system failure or design-related problems. For this reason, OQAs are central to
the VUV method.

3.3 Implications of Mismatched Assumptions

Another key contributor to system failure is mismatched assumptions. Mismatched assumptions
can lead to disastrous circumstances and are therefore a central target of the VUV method.
Mismatched assumption failures occur when engineers make certain assumptions about how a
system will operate or be used and one or more of the assumptions are wrong. It is impossible for
one engineer to understand a large, complex system in precise detail. So different types of
engineers focus on different aspects of the system, often making assumptions about how other
aspects of the system impact those the engineer is focused upon.

Figure 3-3 illustrates the different perspectives and focus areas for the various types of engineers
involved in developing embedded systems. A system engineer focuses on the capabilities of the
system to be built and its interactions with its environment, including the system user or operator,
as well as its decomposition into major subsystems. The system engineer makes assumptions
about how the operator interacts with the system (e.g., an assumption that the driver is inside the
train when the doors are closing). A control engineer focuses on how the physical system is to be
controlled (i.e., on the interaction between the system under control and the control system) in

10 | CMU/SEI-2012-TR-005

order to achieve objectives and may make assumptions about the response of the physical system
to control commands. Application developers translate the control algorithms into software
implementations. In writing the software, the application developer makes assumptions about the
size of data values when choosing an 8- or 16-bit representation for variables, or the measurement
unit associated with the data value. An embedded software system engineer makes decisions
about the runtime architecture of the embedded software in terms of concurrently executing tasks
and their way of communicating with each other as well as decisions about the distribution of
these tasks on a networked computer platform. In the process, assumptions are made about
concurrent execution and mutually exclusive access to data or hardware and about software
executing on physically separate hardware to achieve redundancy. In Section 3.4, we identify four
root cause areas of system-level faults caused by mismatched assumptions in the embedded
software.

Figure 3-3: Implications of Mismatched Assumptions

In its research, the AADL team made a key finding: mismatched assumptions between the
mission platform, the computer system, and the embedded application software contribute
significantly to increased failures and delays in system delivery. To illustrate, we present several
examples of mismatched assumptions from an earlier report [Feiler 2009a].

After years of development of the F/A-22 fighter plane, flight tests began in late 1997, but the
aircraft still experienced serious avionics instability problems as late as 2003. According to
testimony from the GAO, “The Air Force told us avionics have failed or shut down during
numerous tests of F/A-22 aircraft due to software problems. The shutdowns have occurred when
the pilot attempts to use the radar, communication, navigation, identification, and electronic
warfare systems concurrently” [Li 2003]. The shutdowns were due to the use of asynchronous
clocks for processors, insufficient control of state, and the resulting set of inconsistent states
across the processors.

In another example, the flight software for a fighter was migrated to an IMA architecture. The
application software was originally implemented as a cyclic executive with periodic sampling
tasks. When the application was ported to a rate-monotonic, fixed-priority, preemptive scheduler,
the display showing tracked objects randomly blurred. The transfer of target data from the sensor
to the display, which predictably took four frames in the original system, now varied between four

11 | CMU/SEI-2012-TR-005

and eight frames due to preemption and depending on the workload. The display of time-sensitive
data was affected by a change in the scheduling protocol and the use of a nondeterministic
sampling communication scheme. This showed itself as an oscillating target symbol of the tracked
object [Feiler 1998].

In 2008, a Qantas flight unexpectedly dropped as much as 650 feet multiple times within a few
minutes [Wikipedia 2008]. A fault in one of three Air Data Inertial Reference Units (ADIRUs)
caused the unit to supply incorrect data to other aircraft systems and led to automatic
disengagement of the autopilot, false stall warnings, and loss of altitude information on the pilot
display. With the autopilot off, the primary flight control computer still received false data two
minutes later from an ADIRU and commanded a major pitch downward. A failure in one
component of a triple-redundant unit caused an operational mode change and operational response
to a data stream by another subsystem with no recognition of its faulty nature (i.e., the subsystem
assumed a correct data stream due to the redundant nature of the source).

3.4 Root Cause Areas of System-Level Faults

Analysis of the problem examples described in the previous section and additional cases led us to
the identification of four root cause areas of system-level faults [Feiler 2009b, 2010]:

1. end-to-end flows of data streams

2. distributed communicating state machines

3. virtualized resources

4. resource availability

In this section, we describe the elements of each of the four areas and explain the AADL concepts
that support the capture and analysis of relevant system information for assessing each of these
areas in an architecture model. The elements of each root cause area have been incorporated into
the ADC, which is part of the VUV method. We describe the ADC in Section 6.

3.4.1 End-to-End Flow of Data Streams

One root cause of system-level faults is that engineers often look only at a subset of the system.
For systems such as control systems, engineers must also look at the flow of data through the
system from end to end. A typical example of an application pattern that should be modeled end-
to-end is a control system that performs periodic sampled processing of a data stream of sensor
readings. Control loops are sensitive to time and respond with unstable behavior if unexpected
jitter occurs in the latency of the processed data. Another example of where we recommend end-
to-end analysis is in a mission system that processes information about the mission environment
to provide reasonably accurate situational awareness. In this case, messages must be processed in
a time-consistent manner to present a cohesive whole.

To make these end-to-end flows ready for analysis, we must explicitly represent them in an
architecture model of the system as the flow of information between components along
connections. This involves identifying all the components involved in the flow and their
connections. For such analysis to be performed early in the life cycle, it is essential that flows
through components can be represented abstractly by flow specifications from input to output
without necessitating looking inside the implementation of the component. The AADL provides

12 | CMU/SEI-2012-TR-005

constructs to represent both end-to-end flows and component flow specifications annotated with
properties for analysis at different levels of fidelity.

Each processing step can affect the handling of such data streams, and the runtime architecture of
the embedded software can greatly affect the timing of data processing and transfer. Therefore, it
is essential to document assumptions made about such data stream characteristics, which fall into
the following categories:

• characteristics of data such as the application data type (e.g., external temperature), its base
type (e.g., 8-bit or 16-bit signed integer to represent temperature values), and measurement
unit (e.g., temperature expressed in terms of degrees Celsius or Fahrenheit). Two units
exchanging such data might mistakenly make different assumptions about the data
representation.

Support for analysis with AADL: These characteristics are affected by changes and
additions to mission capabilities. An example of a mission capability change is the addition of
a device that can provide position information with higher precision. However, this
information must be propagated throughout the system in order to draw benefits. These
characteristics are represented as property values on the data types associated with ports and
are checked along port connections. The OSATE toolset supports such consistency checking
[SEI 2009b]. Its utility has been demonstrated in the Aerospace Vehicle Systems Institute
(AVSI) System Architecture Virtual Integration (SAVI) proof of concept project [Feiler
2009a].

• data stream characteristics such as lack of missing stream elements, complete transmission of
all stream elements, and acceptable limits in value changes between elements of the stream.
The characteristics of data streams are affected by

− whether the application performs sampled processing of input or message processing

driven by the arrival of messages

− faults in the processing steps

− faults in the protocols used in communicating the data between the processing steps

Support for analysis with AADL: Since data and information streams flow through port
connections, the data stream characteristics can naturally be represented by properties on data
and event data (message) ports. Incoming ports record assumptions they make about data they
receive, while outgoing ports specify the output pattern of the data stream they generate. The
OSATE toolset includes a simple analysis capability that identifies mismatches between data
stream characteristics [SEI 2009b].

• time sensitivity of the data in the form of age, response time, and latency jitter. Contributors
to these related terms are not only the transfer time through the physical device and wire,
processing time, queuing delay, and sampling delay, but also elements of the software
runtime system such as preemptive task scheduling, rate group optimization, concurrency,
partition scheduling, and protocol execution semantics.

Support for analysis with AADL: The mapping of the application software into a runtime
architecture in terms of threads and port connections and its binding to computer hardware
and runtime infrastructure determine the contributors to latency and response time variation.
Flow specifications and end-to-end flows can have property values to reflect requirements,
estimates, and actual data. The OSATE toolset includes an end-to-end latency analysis

13 | CMU/SEI-2012-TR-005

capability that takes into account latency contributions by various runtime system
mechanisms [Feiler 2007a, 2008a].

3.4.2 Distributed Communicating State Machines

A second root cause problem related to system-level failure is that engineers make assumptions
about their runtime systems and computer hardware when implementing communicating state
machines. Examples of such distributed state machine communication are the replicated logic to
manage the reconfiguration of redundant systems, the coordination of operational modes in
different subsystems of a mission-critical system, and application protocols, such as hand shaking,
to manage the release of mission assets such as weapons. We have identified the following types
of state machine interactions:

• coordination of state machines. Replicated state machines must show identical state behavior,
mirrored state behavior, or coordinated state behavior. Implementations of such state behavior
coordination range from communication of state transition events through a message system
or alarm handler to periodic sampling of transmitted state. It is essential to ensure that the
state machine logic of a single state machine preserves its behavior when it is replicated and
distributed. Different implementations of the state coordination respond differently to
different runtime system mechanisms and hardware characteristics. For example, change in
scheduling protocol from cyclic executive to preemptive scheduling based on rate-monotonic
analysis (RMA) may introduce race conditions. Therefore, it is critical that the assumptions
made by the application software are satisfied by the execution platform and still hold after a
platform upgrade.

Support for analysis with AADL: Rockwell Collins and the SEI have demonstrated the
ability to validate redundancy logic through model checking. The SEI has prototyped such an
analysis capability in the context of the OSATE toolset and included a demonstration in the
AVSI SAVI proof of concept (POC) project [de Niz 2009, Feiler 2009a].

• event observations. For control systems, state behavior modeling in Simulink StateFlow often
leads to an implementation that samples exchanged state. State changes are observed by
sampling state in periodically executing control system threads. Sampling of these time-
sensitive states may result in event observation loss and protocol lockup when operating on
different processor and network platforms. State logic that works for nominal operation in a
synchronous system setting without failure may not hold in actual deployment on a
distributed set of processors operating on separate clocks with transient failures of the
communication network. For example, message loss in a communication protocol can have
catastrophic results when transition events are communicated. Similarly, it is imperative to
ensure that variation in time due to jitter or clock drift does not affect the intended
transmission of state transition events.

Support for analysis with AADL: AADL provides well-defined semantics or queuing event
and message ports as well as sampling data ports to represent different port-based
communication. Binding of threads as well as their communication via connections to
elements of the computer platform allow us to check for incompatibility with the services and
protocols provided by processors and networks. This allows us to analyze the system
architecture to detect potential nondeterminism and loss of information—both through model

14 | CMU/SEI-2012-TR-005

checking [de Niz 2009] and by identifying the need for double buffering in sampled port
implementations [Feiler 2008c].

3.4.3 Virtualized Resources

A third root cause area related to system-level failure is that engineers do not understand the
possibly negative side effects that occur when processor, network, and memory resources are
virtualized. System architectures use these virtual resources and assume certain guarantees about
the physical resource that virtual resources make.

Virtualization of resources takes on many forms. Multiple threads (tasks) executing on the same
processor share processor cycles, and one thread’s execution can preempt other task executions
and affect their start and completion time. As a result, a task being migrated from a dedicated
processor to a shared processor may sample its input at different times rather than the beginning
of the sampling period. Migration from a federated architecture to an IMA architecture introduces
time and space partitioning where a partition represents a virtual processor. Threads within a
partition are scheduled as if they were on a processor, but their start and completion time is
affected by the time slot a partition is assigned on a processor. Again the thread sampling time is
affected, in this case also by the allocation of partitions to partition schedule time slots.

The AADL virtual bus concept represents virtual channels and protocols. The AADL virtual
processor concept can represent time partitions as well as hierarchical schedulers. The
assumptions in this root cause area fall into the following areas:

• resource isolation guarantee. Virtual resource concepts of processor partitioning (e.g.,
Aeronautical Radio Incorporated [ARINC]653) and virtual channels represent apportionments
of physical resources as well as information access and fault propagation boundaries that
must be validated and enforced.

Support for analysis with AADL: The AADL process concept represents desired address
space protection within a processor. A processor may be decomposed into virtual machines or
partitions using the AADL virtual processor concept. It provides both time and space
partitioning of the physical processor [SAE 2009]. A processor may not support such address
space protection at runtime, in which case dedicated hardware is a common solution.

• redundancy guarantee. Virtualization turns physical redundancy into logical redundancy. In
order to ensure reliability and availability, we must guarantee that the deployment of the
virtualized resources provides physical redundancy where required.

Support for analysis with AADL: AADL models include deployment binding of application
threads to virtual processors and to processors through binding properties. Similarly,
connections are bound to appropriate virtual buses and buses representing virtual channels
and physical networks. For application components, the modeler can indicate whether
redundant components require deployment on separate physical components. In addition, the
need for physical redundancy can be recorded through the Error Model Annex of AADL
[SAE 2006] and drive hazard, reliability, or availability analysis [Feiler 2007b].

• fair resource use guarantee. Mixed-criticality applications, such as periodic and event-driven
processing, scheduling priorities and load scheduling priorities, multiple security layers,

15 | CMU/SEI-2012-TR-005

safety-criticality levels, and redundancy requirements, must use shared resources consistently
despite conflicting demands.

Support for analysis with AADL: Resource capacities and resource budgets can be
associated with physical resources as well as logical resources and application components.
The OSATE toolset includes a resource analysis capability for processor, memory, and
network (bus) resources. In the case of safety and security concerns, modeling and tool
support ranges from simple safety- and security-level consistency checking along port
connections to full-scale security analysis based on the Bell LaPadula model [Hansson 2008],
including use of virtual processors and virtual buses [Delange 2009a].

• reference time guarantee. Sampling of data on a dedicated processor is performed relative to
the processor clock, while the same software executing as threads in partitions sample the
data in terms of virtual time (i.e., the time the application code actually executes relative to
other threads and partitions). Similarly, applications may process time-sensitive data by time
stamping that assumes a common reference time despite potentially multiple time sources.

Support for analysis with AADL: Virtual time is implicitly reflected in virtual processor
and thread components executing on a shared processor resource according to a scheduling
protocol. AADL provides property support for characterizing different scheduling protocols,
including ARINC653 partition scheduling. AADL also supports modeling of the fact that
different parts of a computer platform may execute on separate clocks through multiple
reference time components. Their characterization includes bounds on clock drift [SAE
2009].

3.4.4 Resource Availability

A fourth root cause is that the computer resources as well as physical resources are shared, and
concurrent use can lead to resource contention. Therefore, it is necessary to validate assumptions
about availability of resources and resource guarantees.

AADL supports modeling of physical and logical resources as discussed in the previous section.
Those resources have properties to indicate coarse-grained resource capacities as well as detailed
forms of resource capacity specification. For example, a processor has properties for a MIPS4
budget, processor cycle time, and context switch times between threads and between processes.

The assumptions for resource availability can be categorized as follows:

• undocumented direct and indirect demands on all logical and physical resources by all
application and infrastructure units for peak demands

Support for analysis with AADL: AADL provides component categories of processor,
memory, and bus to represent physical computer architectures. Similarly, virtual resources
can be represented in AADL models to both require resources as well as provide resource
capacity. Application-level resource demands on processors, memory, and networks can be
derived from deployment bindings, as demonstrated in the AVSI SAVI POC project [Feiler
2009a].

4 MIPS stands for Microprocessor without Interlocked Pipeline Stages.

16 | CMU/SEI-2012-TR-005

• impedance mismatch of resource demand and capacity, such as high-volume transfers over a
bus flooding a low-speed processor with interrupts to handle the traffic, resulting in denial of
service and lower-than-expected processor speed

Support for analysis with AADL: In AADL models, computer hardware components are
interconnected via buses through bus access connections. Bus access features of processor,
memory, bus, and device components can have properties that indicate maximum
contributions to network traffic.

• lack of resource guarantees of shared hardware resources such as delay of low-volume data
transfer due to high-volume traffic by a direct memory access (DMA) transfer

Support for analysis with AADL: An AADL-based analysis capability has recently been
developed to extend the analysis capabilities in OSATE to address this resource contention
issue [Mohan 2009].

3.4.5 Other Quality Dimensions and Root Cause Areas

The VUV method is not limited to analysis of the four identified root cause areas. As new
technologies are deployed in execution platforms, they may uncover additional implicit
assumptions by the embedded software application that may be violated. Similarly, new hazards
may be introduced that must be addressed in terms of reliability, safety, or security. The VUV
method leverages the extensibility of the AADL to permit the addition of properties and
sublanguages to accommodate new analytical frameworks. At the same time, the Eclipse-based
implementation of the OSATE toolset allows the community to rapidly prototype new analysis
capabilities, with over 50 research groups contributing such analysis capabilities.

In addition, some OQAs may be identified as critical, such that their value should be preserved or
improved. For certain OQAs, the AADL-model-based engineering community has associated
analytical frameworks and prototyped implementations (http://www.aadl.info). Two examples are
security [Hansson 2008] and redundancy in support of safety-critical and mission-critical systems
[Feiler 2004].

17 | CMU/SEI-2012-TR-005

4 Virtual Upgrade Validation (VUV): Method Overview

The objective of applying the VUV method is to understand the impact a computer system
upgrade can have on the OQAs of interest for an embedded software system and the relevant
system properties associated with those OQAs (i.e., QA concerns5). In the VUV method, we
discover potential problems by virtually validating an architecture model of the upgraded system
before the upgrade is performed. We evaluate solutions to these problems by revising the model
of the upgraded system. In effect, we use modeling to identify and mitigate technical risks
associated with the upgrade of an embedded, real-time system before a single change is made.

The VUV method focuses on the impact of changes to the computer platform. We can expand it
to cover the impact of changes to components of the embedded application software and to
changes in the physical mission platform (e.g., airframe dynamics) through interaction with
system engineering models.

4.1 The VUV Method and the Architecture Dependencies Catalog (ADC)

The modeling effort in VUV helps to keep the cost of upgrade as low as possible by assessing an
upgrade’s impact before the upgrade begins. The Architecture Dependencies Catalog (ADC) is a
collection of tables that provides modeling guidance to aid focus on potential upgrade problem areas
(see Section 6). The ADC supports the evaluation of potential impact. The ADC allows the modeler
to determine the relevant modeling requirements and assumptions that must be taken into account

Figure 4-1: Focused Modeling via Architectural Dependencies Catalog

5 Quality attribute (QA) concerns are the properties of a system by which attributes of a system are judged,

specified, and measured [Barbacci 1995]. For example, concerns for the performance OQAs include latency, jitter,
and throughput.

18 | CMU/SEI-2012-TR-005

when evaluating an architectural change from two perspectives: the application category and the
OQAs of concern. The modeling requirements help modelers to determine which parts of the system
they need to model in the evaluation. Figure 4-1 illustrates this modeling process. The ADC helps
identify the prevalent application patterns for each application category. For each application
pattern, the ADC allows the modeler to identify the intended component interactions, assumptions
made by the pattern, and modeling requirements for the application and platform. The modeling
requirements are expressed in terms of the application intent and in terms of possible alternate
implementations. For example, events such as operator button pushes can be communicated as
queued events and processed on demand as events arrive, or events can be communicated through
a state variable that is sampled by the recipient at a high enough rate to allow recognition of state
changes as events.

The ADC allows the modeler to identify the most relevant OQAs and related system properties
that can be affected by changes to the computer platform for each of the application categories.
For each system property, the ADC indicates the system components, assumptions, and modeling
requirements on the application and platform in order to perform the relevant analyses.

4.2 Steps and Artifacts of the VUV Method

The VUV process for discovering and evaluating potential risks of computer system upgrades
consists of seven steps, which are listed in Table 4-1.

Table 4-1: Steps of the VUV Method

Step Description

1 Describe the Upgrade. Explain the modifications, reasons, and objectives of the
upgrade.

2 Describe Relevant Operational
Quality Attributes and System
Properties.

Describe and prioritize the OQAs and relevant system
properties (OQA concerns) that must be preserved across the
changes.

3 Identify Changes in Computer
System.

Identify changes in the architecture of the old computer system
with a focus on the parts that are modified, replaced, or added.

4 Identify Architectural
Dependencies.

Identify architectural dependencies by utilizing the ADC.

5 Model and Analyze the Original
System.

Create and analyze a model of the original embedded system
architecture with respect to the identified OQAs and concerns.

6 Model and Analyze the Upgraded
System.

Create and analyze a model of the new embedded system
architecture.

7 Revise the System Upgrade. Provide the opportunity to explore alternatives to correct any
shortcomings of the upgrade.

The steps as well as the artifacts created in the execution of the VUV method are shown in Figure
4-2. In the figure, the steps are represented as gray rounded rectangles and outputs are represented
as blue rectangular icons with a truncated upper-right corner. Requirements, ADC, ATAM results,
and other supporting documents used in the method are represented as a single rectangle.

19 | CMU/SEI-2012-TR-005

Figure 4-2: Steps and Artifacts of the VUV Method

4.3 Summary of the Steps of the VUV Method

In this section, we summarize the purpose and outcomes of each of the steps of the VUV method.

Step 1 explains the modifications of the upgrade (e.g., addition of processors or change of
operating system), the reasons for the upgrade (e.g., obsolescence, vendor issues, or need for
increased processing capacity), and the objectives of the upgrade (e.g., increased performance,
reliability, and/or reduced weight). Input to this step takes the form of a description of the upgrade
(e.g., a requirements document). The outcome of this step is an Upgrade Description Document
or similar document that includes the description, rationale, and objectives of the upgrade.

Step 2 describes the OQA concerns and values of system properties that must be preserved across
the change as well as those that must be improved (e.g., same end-to-end deadlines, desired target
values, and prioritization of system properties to facilitate tradeoff decisions when resources are
limited). A quality attribute utility tree from the ATAM method [Clements 2001] is useful for
prioritizing the OQAs. Figure 4-3 displays a sample utility tree with quantified OQA measures
and their priority levels shown as the leaves of the tree. The leaves of a utility tree typically
represent use case scenarios. We can regard a computer system upgrade as a growth scenario.
Such growth scenarios as well as other use scenarios are reflected in the architecture model
through properties on architecture components, connections, and flows. The outcome of this step
is a summary of the required OQAs and values of the relevant system properties that the upgrade
must satisfy.

Step 1
Describe Upgrade

Step 2
Describe the OQAs

Requirements, ADC,
ATAM results, etc.

Step 3
Identify Changes

Step 4
Identify Architecture

Dependencies

Step 5
Model & Analyze Original

Step 6
Model & Analyze Changed

Step 7
Revise Upgrade

OQAs = Operational Quality Attributes
ADC = Architecture Dependencies Catalog
ATAM = Architecture Tradeoff Analysis Method

Relevant OQAs

Upgrade Description
Document

Changes Documentation

Modeling Requirements
for Original System

Revised Model
and Results

Original System
Model

Modeling Requirements
for Changed System Models and

Analysis Results

inputs

outputs

Changed System
Model

Changed System
Analysis Results

Original System
Analysis Results

20 | CMU/SEI-2012-TR-005

Utility

Performance

Modifiability

Availability

Security

Add new engine and controller
in < 20 person-months.

Change vehicle control logic
in < 10 person-weeks.

Vehicle power outage requires battery
backup stabilization < 5 ms.

Network failure detected and recovered
in < 2 seconds.

Reduce input to actuation latency to
< 150 ms.

Deliver satellite video in real time.

Access authorization works
99.999% of the time.

Credit card transactions are secure
99.999% of the time.

Data
Latency

Transaction
Throughput

New products

Change
COTS

H/W failure

COTS S/W
failures

Data

Data
confidentiality

integrity

(L,M)

(M,M)

(H,H)

(H,L)

(H,H)

(H,H)

(H,M)

(H,L)

Figure 4-3: A Sample Utility Tree

Step 3 identifies changes in the architecture of the computer platform with a focus on the parts of
the architecture that are added, modified, or removed. These parts can be schedulers, protocols,
processors, networks, or memory. The outcome of this step is the documentation of those changes
in the computer that are involved in the upgrade.

Step 4 identifies architectural dependencies that provide the modeling and analysis requirements
for the original and changed systems. This critical step is supported by the ADC, which is
presented in Section 6. This catalog reflects insights from the root cause areas discussed in
Section 3.4. It guides a designer in defining the modeling and analysis required to assess potential
impact on OQAs and identifies relevant system properties as well as impacted assumptions. The
outcome of this step is the documentation of the modeling and analysis requirements for both the
original and new systems.

The ADC consists of four tables that are defined in Section 6. These tables guide a designer from
a general application domain categorization of the system to specific modeling and analysis
requirements and associated assumptions that facilitate evaluating potential problems in an
upgrade. Figure 4-4 shows the five-substep procedure employing the ADC with the four tables
shown on the left.

• In the first two substeps, a designer (1) identifies the relevant application patterns using the
Application Category to Patterns table (Table 6-1 on page 34) and (2) establishes modeling
and analysis requirements for those patterns, using the Modeling Requirements for
Application Patterns table (Table 6-3 on page 35).

• In the next two substeps, the designer (3) identifies the relevant OQAs and relevant system
properties using the Application Category to OQA-Related System Properties table (Table 6-2
on page 35) and (4) establishes the modeling and analysis requirements for the relevant
system properties using the Modeling Requirements of Relevant System Properties table
(Table 6-4 on page 37).

• Finally, the designer (5) compiles a combined listing of recommended modeling and analysis
requirements for the system. Modeling and analysis requirements describe what to model, the

21 | CMU/SEI-2012-TR-005

analyses to conduct, and the assumptions associated with the relevant application patterns and
relevant system properties.

Application
Category to

Patterns

Modeling
Requirements for

Application Patterns

Modeling
Requirements

of OQAs

(1) Identify the relevant application patterns—those present in the system

Relevant
Patterns

(2) Establish modeling requirements for the relevant patterns

(4)Establish additional modeling requirements for relevant OQAs

Modeling
Requirements

Modeling
Requirements

Recommended
Modeling

Requirements

(5) Compile Modeling Requirements

Application
Category to

OQAs
Relevant OQAs

(3) Identify relevant OQAs to analyze for the application categories

Application OQAs

Application Patterns

Figure 4-4: Step 4 ADC Procedure

This procedure is completed for the original system in support of developing a model of the
original in Step 5 and for the modified (upgraded) system in support of developing a Modified
(Upgrade) Model in Step 6.

Step 5 creates and analyzes a model of the original embedded system architecture, as defined by
the modeling and analysis requirements identified in Step 4. If a model of the original system is
not available, the designer creates one. Otherwise, the designer uses the relevant elements of an
existing model. The model of the original system consists of the application software architecture
and a model of the existing execution platform. The focus of the models is on the upgrade
changes. This focus results in models that have some parts of the architecture elaborated (those
most relevant to the changes), while other parts are represented more abstractly. For example,
when part of a system is having its backbone network replaced, we may represent a multi-core
processor as a black box. The results of Step 4 provide guidance on the information that we must
capture to perform OQA-specific analysis. Section 7.1 (beginning on page 39) provides additional
modeling and analysis guidance both for representing application patterns and for supporting
analysis of specific OQAs. The outcome of this step is the model of the original system and the
results of the analyses of that model.

Step 6 creates and analyzes a model of the new embedded system architecture, as defined by the
modeling and analysis requirements identified in Step 4. In this case, the focus is primarily on

22 | CMU/SEI-2012-TR-005

capturing the new execution platform and annotating those parts that have changed and are
relevant to the OQA analyses. The analyses will identify whether the OQAs meet their desired
values. The outcome of this step is the model of the change system and the results of the analyses
of that model.

Step 7 provides the opportunity to explore alternatives to correct any shortcoming of the upgrade.
This may involve refinements to the computer system, refinements to the runtime architecture of
the application to change the assumptions on the computer system, or possible tuning of the
application functionality to reduce the dependency on certain runtime architecture properties. The
outcomes of this step are revised models and supporting analysis results.

Figure 4-5 shows an analysis framework for software assurance developed by the SEI for NASA
[NASA 2009b]. The steps of the VUV method fit into this framework as follows. Steps 1, 2, 3,
and 4 support the Focus activity. Steps 5 and 6 support the activities of the Build and Analyze
phases. Step 7 is represented in the process flow by the feedback loop between the Build and the
Analyze phases, as shown by the dual-colored flow from Analyze Models. In this case, a modeler
iterates between revising the upgraded system model and analyzing the impact of the change on
the OQA concerns.

Control Flow

AN
ALYZE

BU
ILD

FO
CU

S

Information Flow

Analyze Models

Create Models

Create
Foundation for

Analysis

Report Results

Analysis Plan

AADL Models

V&V/IV&V Plan (modified)

Analysis Repository

Component Library

Reference Architectures

Custom Property Sets

Analysis Guidelines

Specifications

V&V / IV&V Plan

Critical Issues

Analysis Products
(previous analysis)

Analysis View Reports (partial)

Analysis Products
• Analysis View Reports
• Other (project specific)

Figure 4-5: Analysis Practice Framework Summary

23 | CMU/SEI-2012-TR-005

5 Application of VUV by Example

This section elaborates on the VUV method steps. We describe the actions and outcomes for each
step in a simplified fly-by-wire system such as the one in Figure 5-1. In this system, a pilot uses a
sidestick6 to command the aircraft. The sidestick output goes to a fly-by-wire control computer
that calculates and sends the requisite commands to control surface actuators that move the
surfaces. Sensors associated with the control surfaces send position-related information to the fly-
by-wire control computer via individual sensor lines. Note that this system is a simplified
example used to illustrate the method. It does not represent any specific fly-by-wire
implementation.

Figure 5-1: Control Surfaces on an Aircraft

In subsequent sections, we describe the application of the VUV method to this simplified
example.

5.1 Step 1: Describe the Upgrade

This step provides the reason and objective for the upgrade. The reason must state the situation
that triggered the decision to upgrade the execution platform. The objective should state the
desired result of the upgrade; it is paired with a description of what must be done, at a high level,
to accomplish the objective.

In our example, the reason for the upgrade is to eliminate noise7 in the signals received from the
sensors. This noise is due to the lengthy runs from the sensors to the control computer. The
upgrade objective is to reduce the distance between the sensors and the Sense Plane Status
function to less than 10 meters. This objective implies that this function will be separated from the
other functions and put into a special computer closer to the wings.

6 A sidestick is a device that translates the motion of the pilot’s hand into control commands for the airplane.

7 Signal noise is due to random fluctuation in an electrical circuit.

24 | CMU/SEI-2012-TR-005

Figure 5-2 illustrates the upgrade change. The upper portion shows the original system that
consists of application tasks that execute on a single processor. The lower part shows the same set
of application tasks distributed across two processors that interconnect via a network bus. In this
figure, the solid lines with black arrowheads connecting the software components represent the
communication of data between those components. The solid lines with white arrowheads define
the connections between processors and the network bus. The double-lined arrows, extending
from each system boundary to a processor and from a cross-system connection to the network
bus, represent the binding of the software to a specific processor and communication connection
to a specific network.

Figure 5-2: An Example of Execution Platform Changes

5.2 Step 2: Describe Relevant Operational Quality Attributes and System Properties

Three scenarios of system properties relevant to OQA concerns must be documented: system
properties whose values must meet requirements in the original system, system properties whose
values must meet modified requirements, and possibly system properties whose values must meet
new requirements. When we document these system properties, the parts of the system involved
in achieving them must be included. The documentation will guide our investigation of which
parts and characteristics of the old execution platform affect the relevant system properties.

25 | CMU/SEI-2012-TR-005

To provide further detail regarding the system properties to be maintained, we expand the
explanation of the system. The computer continuously senses the status of the aircraft to evaluate
changes in the environment (e.g., disturbance) and adjusts the control surfaces accordingly. This
continuous sensing and correction of the control surfaces must be performed frequently enough to
avoid variations in the environment that are too large to correct. A system property of interest is
the frequency required to sense the environment and aircraft position and adjust the trim of the
control surfaces. (For the Airbus A320, this sensing-adjustment cycle is completed every 30
seconds.8) This is modeled as a periodic thread that executes the functions in sequence. A
schedulability analysis verifies that this task together with other tasks executing on the same
processor can finish by the required individual end-to-end deadlines.

To understand better the architectural impact of the platform change on the relevant system
properties, consider the new embedded system architecture depicted in Figure 5-3.

Figure 5-3: New Runtime Architecture for Automatic Trimming

The change in this figure consists of the movement of the module Sense Plane Status to a
new processor, Processor 2, that is communicating with the old processor, Processor 1, through a
new network, Network 1. While these changes seem to increase the processor cycles available for
scheduling the different modules in the automatic trim subsystem, the interprocessor
communication protocol, the scheduling of the network and processor, and the speed of the new
processor and network, among other things, can affect the OQA concerns of interest. To
understand the logic behind this change, let us consider the elements of the change (i.e., the
network bandwidth, the communication protocol, and the processor scheduling).

• A direct comparison against the required communication bandwidth shows the network
bandwidth effect on the changes in Figure 5-3. In particular, let us imagine that the plane
status is contained in a data structure of 30 KB, which is communicated between the Sense
Plane Status and the Calculate Trim Pos modules. Communicating every 30

seconds, then, requires 1KB/s of bandwidth capacity (an additional latency due to the
communication delay will occur). Obviously, if the network has a bandwidth capacity of less
than 1KB/s, this OQA requirement will not be satisfied.

8 While this period seems long, it is the one presented in the reference literature [Apollo 2002]. Hence, we will

use it to exemplify that problems can emerge even at a slow rate.

26 | CMU/SEI-2012-TR-005

• The selected communication protocol plays a role in how the application is communicating
data. In this case, to reduce the required communication bandwidth, we can change the
application to send only those parts of the plane position data structure that have changed—a
state change or state transition communication application pattern (see Table 6-3). However,
if the communication protocol does not guarantee message delivery and a message is lost,
then the Calculate Trim Pos module acts on a position of the plane that is incorrect due

to the loss of incremental updates.

• Processor scheduling involves the timing and organization of the synchronous execution of
the different threads. While a fixed-priority scheduler offers multiple advantages, if the
original system is using static timeline scheduling, the designers of the original system may
have assumed specific characteristics of this scheduling policy (e.g., a specific unchanging
order of execution of the threads). In our example, the functions Calculate Trim Pos
and Modify Trim Pos execute in a single thread, which implies that they are always

executed in the same order. If we put them in separate threads and change the scheduler in
Processor 1 from a time-division multiplexing schedule (fixed execution timeslots over a
time frame) to a preemptive fixed-priority scheduler (using rate monotonic scheduling [Klein
1993]), then it can no longer be assumed that the thread Calculate Trim Pos will always
run before thread Modify Trim Pos. That is, it may be possible for Modify Trim Pos
to run before Calculate Trim Pos.

In summary, the move to a two-processor system and the change in scheduling policy affect the
information flow, in particular its latency and the age of data. The chosen scheduling policy,
network protocol, and hardware are potential contributors to latency and latency jitter. There is
also a potential for race conditions, especially if the implementation of inter-thread
communication is through shared data buffers.

5.3 Step 3: Identify Changes in the Computer System

Along with the description of the OQAs, the affected parts of the system are documented. This
documentation is not a full description but an identification of the areas to explore further in
search of potential problems. In our example, the changes include the addition of a processor, a
network, and associated communication protocol and the selection (and changes) to the
processors’ schedulers. These changes can violate application assumptions for communication
across the network and the execution sequence of the modules Calculate Trim Pos and
Modify Trim Pos, among other areas.

5.4 Step 4: Identify Architectural Dependencies

This key step helps define the potential risks and the amount of modeling needed to reduce
uncertainty about those risks. In this step, we take the OQA concerns in terms of relevant system
properties and the architectural changes identified in the previous two steps and evaluate problems
in terms of

• potential disruptions to system property values due to changes

• potential assumption mismatches related to architectural changes

27 | CMU/SEI-2012-TR-005

The identification of both types of potential problems utilizes the catalog of architectural
dependencies that contains relevant system properties and assumption dependencies (discussed in
Section 6). The catalog lists the required runtime patterns upon which each system property
depends and the application assumptions affected by the upgrade. In addition, for each application
assumption, the catalog provides a list of application patterns and categories sensitive to the
assumption.

Using the ADC, we relate changes to affected system properties and modeling requirements in
order to identify elements that affect these system properties in the existing runtime architecture
and the new runtime architecture. Similarly, taking the view of the application assumptions
affected by the changes, we verify whether our application contains the categories and
architecture interaction patterns sensitive to these assumptions. Where this is the case, we model
the parts of the application belonging to the category.

As an example, let us reconsider the automatic trimming example of Figure 5-3. It contains both
relevant system properties and application patterns sensitive to changes to specific parts of the
runtime architecture. On the one hand, a system property of interest is the end-to-end deadline that
determines the rate required to complete the control cycle from the position sensing to the trim
position modification. The flow follows the path of the control loop pattern, whose assumption is
deterministic sampling of the data stream. On the other hand, the state change (state transition
communication) pattern (Table 6-3) applies because changes in data state are being transmitted.
From the state transition communication pattern, we identify the assumption of reliable
communication that needs to be modeled in both the old and new runtime architectures. For the
computer platform, we identify the schedulers, the communication hardware and protocol, and the
timing parameters of the threads related to the changed communication path (between Sense
Plane Position and Calculate Trim Pos) as elements that can affect the assumptions.

5.5 Step 5: Model and Analyze Original System

Using the application category (Control System), we can obtain both application patterns (from
Table 6-1) and related OQAs (from Table 6-2). Then from the patterns and OQAs, we can obtain
the modeling needs related to both (Table 6-3 and Table 6-4, respectively). These modeling needs
state the system elements and properties relevant to the analysis of a particular OQA.

In this modeling step, we express—using AADL semantics—how the current runtime architecture
achieves the system properties of interest and complies with the application assumptions. The
model must contain enough information to enable analyses that support these assessments. We
call this model the base model. In our automatic trimming example, the system properties of
interest that we model are the processor together with the application threads.

The second goal is to identify and model the parts of the original architecture that support the
application assumptions. In our example, this implies modeling the shared memory structure that
represents the plane position and how this structure is updated and queried. Figure 5-4 depicts this
model, with the list of component properties shown in Table 5-1 and the computer platform-level
properties shown in

Table 5-2. Figure 5-4 shows the thread operating at a 30-second period.

28 | CMU/SEI-2012-TR-005

Figure 5-4: Base Model

Table 5-1: Application Component Properties of the Base Model

Component Property Value

Processor 1 Processor Speed 1 GHZ

Scheduling Policy Rate-Monotonic

Process 1 Memory Requirement 5 MB

Thread 1 Activation Pattern Periodic

Period 30 s

Plane Status Size of Memory 30 KB

Sense Plane Status Worst-Case Execution Time (WCET) 1 s

Calculate Trim Pos WCET 1 s

Modify Trim Pos WCET 1 s

Table 5-2: Computer Platform Properties

Component Property Value

Processor 1 Utilization 10%

Thread 1 Deadlines Met True

System Failure Mode All or Nothing

5.6 Step 6: Model and Analyze Changed System

Using the base model, we next develop a modified model that includes the new computer system.
The design of this new model should be guided by the potential disruptions to relevant system
properties identified in Table 5-2. It should contain enough information to conduct analysis of
these system properties.

We need the same level of modeling to describe the features that support the architectural
assumptions. In our example, this involves the new processor and network, the schedulers in both
processors and the network, the tasks run by the processors and the flows going through the
network, and the communication protocol. The modeling of these elements must contain the
proper characteristics that enable us to (a) verify the system property of interest and (b) evaluate
whether the assumptions from the state transition communication are honored or not. The
architecture is presented in Figure 5-5 and its properties in Table 5-3.

29 | CMU/SEI-2012-TR-005

Figure 5-5: Modified Model Using New Computer System

Table 5-3: System Component Properties of the Modified Architecture

Component Property Value

Processor 1 Processor Speed 1 GHz

Scheduling Policy Rate-Monotonic

Processor 2 Processor Speed 1 GHz

Scheduling Policy Rate-Monotonic

Network 1 Bandwidth Capacity 512 Bytes

Message Scheduler CANBus

Reliability Unreliable

Process 1 Memory Requirement 3 MB

Process 2 Memory Requirement 1 MB

Thread 1 Activation Pattern Periodic

Period 30 s

Thread 2 Activation Pattern Periodic

Period 30 s

Plane Status Size of Memory 30 KB

Sense Plane Status WCET 1 s

Calculate Trim Pos WCET 1 s

Modify Trim Pos WCET 1 s

Update Local Status WCET 1 s

Sense Plane Status → Update Local
Status

Synchronization Sampled

Reliability Unreliable

Message Size 128 Bytes

5.7 Step 7: Revise the System Upgrade

In this step, we conduct a model-based analysis of the system properties of interest and
application assumptions affected by the change. The problems discovered in this analysis guide
model corrections to achieve the desired system property values. As we make these corrections,
new interactions with other system properties can occur and new corrections will be triggered.
The corrections to the model can be of two types: (1) corrections to the computer system to
support the desired system property values or (2) corrections to the runtime architecture of the
embedded software application to adapt to the new computer system. The decision of what kind

30 | CMU/SEI-2012-TR-005

of corrections are desired and the potential cost of these corrections are part of the tradeoffs
needed to be made before any firm decision takes place in terms of platform acquisition, code
changes, and the like.

In our example, one of these tradeoffs is that we transmit not the complete plane state every 30
seconds but only the delta, which is reflected in the state change/transition communication
pattern. As shown in Table 6-3, this pattern is sensitive to other architectural characteristics (e.g.,
reliability of communication). Hence, as we explore this option, the service guarantees (no
message loss, ordered delivery) of the communication must be added to the model to enable
exploring the tradeoffs.

In addition, one assumption implicit in the base model is that functions execute in order:
calculation of trim corrections always occurs after update of the plane status. The destination
process of the connection in the modified model samples its input independently of the sender,
which results in potentially nondeterministic sampling of the input stream. This sampling is
indicated by the type of connection between the two threads. For time-sensitive data, this can lead
to jitter, as is identified by the end-to-end latency analysis. For discrete-event data transmission
through sampling rather than queuing, such as state changes or events, this can lead to a missed
change or event, if the jitter exceeds the rate at which changes or events are sampled. In our
example, this means that the plane status may or may not be updated before the calculation of the
trim correction starts.

Our first refinement resolves this nondeterministic communication across processors by marking
the connection between the processes as an immediate connection (i.e., a connection that assures
deterministic sampling). Figure 5-6 depicts this architecture and Table 5-4 depicts its properties.
This change implies that Thread 1 delays its execution until Thread 2 is finished. This delay may
affect the execution of other threads that execute on Processor 1 (i.e., the schedulability of threads
on that processor).

Figure 5-6: Deterministic Communication

31 | CMU/SEI-2012-TR-005

Table 5-4: Properties of First Refinement

Component Property Value

Processor 1 Processor Speed 1 GHz

Scheduling Policy Rate-Monotonic

Processor 2 Processor Speed 1 GHz

Scheduling Policy Rate-Monotonic

Network 1 Bandwidth Capacity 512 Bytes

Message Scheduler CANBus

Reliability Unreliable

Process 1 Memory Requirement 3 MB

Process 2 Memory Requirement 1 MB

Thread 1 Activation Pattern Periodic

Period 30 s

Thread 2 Activation Pattern Periodic

Period 30 s

Plane Status Size of Memory 30 KB

Sense Plane Status WCET 1 s

Calculate Trim Pos WCET 1 s

Modify Trim Pos WCET 1 s

Update Local Status WCET 1 s

Sense Plane Status → Update Local
Status

Synchronization Synchronous

Reliability Unreliable

Message Size 128 Bytes

The final refinement introduces reliable communication needed for the state transition pattern. We
achieve this by making the network protocol reliable, such that no messages can be lost between
the two processors. If the immediate connection between the two processors is bound to a reliable
network, no messages that flow over the connections will be lost. Figure 5-7 presents the
architecture for this refinement and Table 5-5 presents its properties.

Figure 5-7: Final Refinement

32 | CMU/SEI-2012-TR-005

Table 5-5: Properties of the Final Refinement

Component Property Value

Processor 1 Processor Speed 1 GHz

Scheduling Policy Rate-Monotonic

Processor 2 Processor Speed 1 GHz

Scheduling Policy Rate-Monotonic

Network 1 Bandwidth Capacity 512 Bytes

Message Scheduler CANBus

Reliability Reliable

Process 1 Memory Requirement 3 MB

Process 2 Memory Requirement 1 MB

Thread 1 Activation Pattern Periodic

Period 30 s

Thread 2 Activation Pattern Periodic

Period 30 s

Plane Status Size of Memory 30 KB

Sense Plane Status WCET 1 s

Calculate Trim Pos WCET 1 s

Modify Trim Pos WCET 1 s

Update Local Status WCET 1 s

Sense Plane Status → Update Local
Status

Synchronization Synchronous

Reliability Reliable

Message Size 128 Bytes

33 | CMU/SEI-2012-TR-005

6 Architectural Dependencies Catalog

The purpose of the ADC is to support a modeler in characterizing the runtime architecture of an
embedded software system and identifying the assumptions related to the computer system
associated with that architecture.

The root cause areas identified in Section 3.4 are reflected in this catalog through application
patterns, computer platform components, and deployment bindings as follows:

• End-to-end flow of data streams is a generalization of several application patterns such as the
control loop, message processing, and sensor/signal fusion.

• Distributed communicating state machines is a generalization of several application patterns
such as hybrid control in control loops, redundancy management logic of replicated
distributed system components, and state change/transition communication such as
application hand-shaking protocols.

• Virtualized resources is an abstraction of several runtime architecture concepts such as
scheduling of concurrent thread execution, time and space partitioning of processors and
networks, multi-processor and multi-core computing platforms, and globally synchronous
execution semantics versus hardware running asynchronously through separate clocks.

• Resource availability deals with the capacity of processor, network/bus, and memory
resources actually available for the execution of the embedded software application system.
The resource demand of the application is mapped onto the resource capacity of the computer
platform through deployment bindings.

The ADC is organized in four tables that guide the designer from a general categorization of the
application domain to specific modeling requirements to evaluate potential problems in a planned
upgrade. The first table (Table 6-1) contains a mapping of application categories to common
application patterns used in these categories. The second table (Table 6-2) contains a mapping of
application categories to common OQA-specific system properties that are important to honor in
these categories. From these categories then, we use the last two tables to map each of the
application patterns (Table 6-3) and system properties (Table 6-4) to the modeling and analysis
requirements.

We use the tables of the catalog as follows. First, using Table 6-1, the designer should identify the
application category to which the system being upgraded belongs. For instance, for the automatic
trimming adjustment in the example in Section 5, we would choose “Control System.” We use the
application patterns column as a checklist to verify whether any of these common patterns are
present in the system. For our example, we would choose “Control loops.”

Second, using Table 6-2, we identify the OQAs we would need to check, such as hard deadlines,
utilization, latency jitter, end-to-end deadlines, and reliability.

Third, using Table 6-3, we take the application patterns that were present in our system (control
loops and time-triggered activities) and identify the common assumptions that these patterns make
and the recommended implementation pattern. In our example, the assumptions would be minimal

34 | CMU/SEI-2012-TR-005

sample processing jitter, and the implementation patterns would be periodic real-time tasks. Note
that the rows in this table also list what we need to model to be able to explore the OQAs of
interest.

Fourth, using Table 6-4 and taking the OQAs identified in Table 6-2, we get additional modeling
requirements for each OQA. This procedure would then give us the recommended modeling
details that we need to include and the OQAs we need to check.

Based on the identified information from the ADC, we create the AADL model. Section 7
provides guidance on what to model in terms of AADL concepts and properties and which
analysis to run.

6.1 Application Categories to Application Patterns

Table 6-1: Application Category to Patterns

Application Category Application Patterns

Control System:
Continuous time control and modal hybrid control

• Control loops
• State change/transition communication
• Replication

Signal Processing:
Multiple data streams and operational modes

• Sensor/Signal fusion
• State change/transition communication
• Replication

Multimedia:
Multiple streams and Quality-of-Service levels and concurrent
processing

• Sensor/Signal fusion
• State change/transition communication
• Replication

Mission Control:
Message fusion into common blackboard with security concerns
and operational modes and processing capacity

• Message processing/fusion
• State change/transition communication
• Shared data communication
• System partitioning
• Replication

This table shows the patterns of each of the application categories in underlined text. For example,
the primary patterns of a control system are control loops to represent continuous time-sampled
processing of sensor data to generate actuator control signals and the state change/transition
communication pattern to represent coordination of discrete hybrid control states. In the case of
signal processing, we have sensor/signal fusion to represent handling of multiple interacting data
streams and state change/transition communication to represent coordination of operational mode
state machines. The multimedia application category deals with multiple media streams that
require time synchronization (sensor/signal fusion) and operate in several discrete QoS levels
(state change/transition communication). The category mission control does message processing
and fusion to maintain a common operational picture (shared data communication as blackboard
implementation) with operational modes (state change/transition communication) and system
partitioning to address security concerns with respect to the information.

All four application categories may use the replication pattern (shown without underlining) for the
following reasons: redundancy for fault tolerance and extra capacity to improve throughput or
reduce response time. The replication pattern uses state change/transition communication to
implement its redundancy management logic.

35 | CMU/SEI-2012-TR-005

6.2 Application Categories to OQA-Related System Properties

Table 6-2: Application Category to OQA-Related System Properties

Application Category OQA-Related System Properties

Control System • Hard deadlines
• Latency jitter
• End-to-end deadlines
• Utilization
• Reliability

Signal Processing • Soft deadlines
• Response time as soft end-to-end deadline
• Throughput and utilization

Multimedia • Soft deadlines
• Response time as soft end-to-end deadline
• Latency jitter
• Throughput and utilization

Mission Control • Hard deadlines
• Soft deadlines
• Response time as soft end-to-end deadline
• Latency jitter
• Utilization
• Availability (mean time to failure)
• Security (hazard leakage)

Many of the OQA-related system properties in the above table focus on performance, which is
affected by variability of the workload and availability of the computer resources and is measured
in terms of an end-to-end data flow. Similarly, security in the form of confidentiality must
validate security properties along end-to-end information flows [Hansson 2008]. OQAs such as
reliability or availability lead to the use of both

• the Error Model Annex [SAE 2006] for dependability modeling for stochastic predictions
[Feiler 2007b]

• replication patterns to achieve fault tolerance through physical redundancy in computer
hardware and logical redundancy in application software [Feiler 2004]

6.3 Modeling Requirements for Application Patterns

Table 6-3 outlines for each application pattern the intent of the application pattern and the
assumptions the pattern makes. Furthermore, the table suggests the most appropriate model
representation to capture the application’s intent. In addition, it indicates model representations of
possible alternate application implementations that we may encounter in actual systems. If the
application intent and its implementation differ, there is a potential for the implementation to not
correctly realize the intent or only do so assuming a particular computer platform. Any change to
the platform may result in incorrect application behavior, typically timing-related misbehavior.

36 | CMU/SEI-2012-TR-005

Table 6-3: Modeling Requirements for Application Patterns

Application
Pattern

Application
Intent

Assumptions Modeling Requirements

Control loops Sampled
processing of
input by periodic
real-time tasks

Deterministic
sampling of
data stream at
given rate

Sampling jitter
is minimal

Application intent: periodic threads, data flow via data
ports and flow specifications

Alternate implementations: time-triggered activities with
port-based or shared data communication

Platform: sync/async platform, scheduling protocol,
communication protocol and network

Analysis: schedulability, response time, jitter

State
change/transition
communication

Coordination
state
change/transition
between state
machines

Replication and
distribution of
state machines

Reliable
ordered
transfer of
transitions

Transfer of
most recent
state

Application intent: queued delivery of ordered transition
event or state change stream vs. sampling of transferred
state

Alternate implementations: event observation by
sampling of state

Platform: sync/async platform, delivery guarantees of
network/protocol

Analysis: transition observation misses due to latency
jitter, transient inconsistency due to latency

Sensor/signal
fusion

Time-consistent
fusion of periodic
data by
managed latency
and time-
stamped
messages

Common time
reference in
time-stamped
data

Latency jitter is
minimal

Application intent: periodic threads, data flow via data
ports or event data ports and flow specifications

Alternate implementations: event/message-triggered
activities with port queues, or data sampling with
application queuing

Platform: sync/async platform and time source,
scheduling protocol, communication protocol and network

Analysis: schedulability, response time, jitter, latency
delta at fusion points

Message
processing and
fusion

Timely message
processing

Time-consistent
fusion of data by
time-stamped
messages

Common time
reference in
time-stamped
data

Application intent: aperiodic threads, data flow via event
data ports and flow specifications

Alternate implementations: data sampling (data port or
shared data) with application queuing

Platform: sync/async platform and time source,
scheduling protocol, communication protocol and network

Analysis: schedulability, response time, jitter, time delta
at fusion points

Replication Centralized vs.
distributed
redundancy logic

Physical
redundancy to
address
hardware
failures

Application intent: Distributed state transition event
coordination of time and event-triggered tasks

Alternate implementations: see State transition
communication.

Platform: see State transition communication.

Analysis: see State transition communication, logic
validation under asynchronous execution, logic failures,
communication losses.

Shared data
communication

Coordinated
shared state
updates

Large data
volume

Infrequent or
partial access

Application intent: synchronized, shared data access by
independently executing tasks

Alternate implementations: sampled periodic data
processing or distributed remote data server

Platform: sync/async platform and time source,
scheduling protocol, communication protocol and network

Analysis: schedulability, blocking times, and priority
inversion

37 | CMU/SEI-2012-TR-005

Application
Pattern

Application
Intent

Assumptions Modeling Requirements

System
partitioning

Resource
virtualization and
partitioning, fault
management,
multiple security
levels

Fault and
hazard
isolation

Application intent: space and time partitioning via logical
processor and network

Alternate implementations: Dedicated processor and
network

Platform: Processor and virtual processor, network and
virtual bus (channel)

Analysis: resource enforcement, fault propagation, data
integrity (security)

6.4 Modeling Requirements of Relevant System Properties

Table 6-4 specifies for each system property the system components that may influence the
property values, assumptions made when specifying values for these properties, and modeling
requirements in terms of the application and platform as well as suggested analyses.

Table 6-4: Modeling Requirements of Relevant System Properties

System Property System
Components

Assumptions Modeling Requirements

Hard deadlines Processor, network
as scheduled
resource

All processor and
network resource
demands are
known.

All resource
capacities are
known.

Application: periodic and aperiodic tasks, shared
data, immediate and delayed port connections

Platform: processor with scheduler, network with
communication protocol, hardware capacities,
deployment on given processor

Analysis: schedulability and response time,
blocking times and priority inversion

Soft deadlines Processor, network
as scheduled
resource

Known variability of
resource demand
and capacity

Application: periodic and aperiodic tasks, shared
data, immediate and delayed port connections,
(sampling) data and (queued) event data ports

Platform: processor with scheduler, network with
communication protocol, hardware capacities,
deployment on given processor

Analysis: schedulability and response time,
blocking times and priority inversion, percentage of
missed deadlines, queuing

End-to-end
deadlines

Computer platform
(processors and
networks) as
scheduled
resource

Full control of
processor and
communication
scheduling

Application: periodic and aperiodic tasks, shared
data and port connections

Platform: processor with scheduler, network with
communication protocol, hardware capacities,
deployment on platform

Analysis: schedulability and response time, flow
latency

Latency jitter Computer platform
(processors and
networks) as
scheduled
resource

Known min/max
end-to-end
deadline
contributors

Application: periodic and aperiodic tasks, shared
data and port connections

Platform: processor with scheduler, network with
communication protocol, hardware capacities,
deployment on platform

Analysis: schedulability and response time, flow
latency

Throughput and
Utilization

Computer platform
(processors and

Known peak loads

Guaranteed upper

Application: periodic and aperiodic tasks, shared
data and port connections

38 | CMU/SEI-2012-TR-005

System Property System
Components

Assumptions Modeling Requirements

networks) as
scheduled
resource

bound in
processing time

Platform: processor with scheduler, network with
communication protocol, hardware capacities,
deployment on platform

Analysis: schedulability and response time, WCET
inflation

Reliability and
availability

Managed
replication of
computer platform
components

Physical
redundancy

Application: logical replication of tasks and
connections, redundancy management logic

Platform: physical replication of processors and
networks, deployment on platform with explicit
collocation, noncollocation of application units,
component fault behavior and probability

Analysis: availability and reliability, fail-over logic
consistency, hazard analysis, Failure Mode and
Effects Analysis

Security Physical and
logical security
boundaries through
partitions

Encryption and
authentication
infrastructure

Application: tasks and data interchange via ports
and data sharing, security levels, and categories

Platform: processor and network with logical
partitioning, data communication security
mechanisms, security policies, deployment on
platform

Analysis: secrecy, confidentiality, sanitization

39 | CMU/SEI-2012-TR-005

7 AADL Modeling and Analysis Strategies

In this section, we describe the specific strategies used to develop the models required by the
ADC. We separate these into the application pattern modeling strategies and the OQA modeling
strategies. In addition, we provide some guidance in determining resource availability in a
computer platform, which may be less than the available raw capacity.

It is worth noting that the purpose of this section is not to teach how to model in AADL. Rather,
we convey the strategies to model, analyze, and understand the result of the analysis to avoid the
potential problems associated with upgrading the execution platform of an embedded, real-time
system. As a result, we assume the reader is familiar with AADL concepts (including those
introduced in Version 2 of the standard),9 which are summarized in the Appendix of this report.
We will not dwell on the syntax and semantics of the language, but refer the reader to other
documentation [Feiler 2006, SEI 2009a].10

Note as well that there is not a single, unified analysis that can be run to discover the entire realm
of potential problems. We must choose from a collection of analyses to explore areas of problems.
The purpose of this method is to guide the designer to make these choices.

7.1 Application Pattern Modeling Strategies

Central to our approach for developing AADL models representing application patterns is that we
understand the application pattern’s intent and compare it to the implementation chosen by the
developer. One example when the intent of the application pattern is to communicate random
events, each of which is expected to be processed by the recipient, but the implementation
represents events in state variables that are periodically communicated and sampled by the
recipient. Such an implementation is sensitive to data transfer timing, input sampling, and
execution timing. Under some circumstances, the recipient may miss an event.

7.1.1 Control Loops

The purpose of control loops is to control continuous time systems (i.e., systems that follow the
laws of physics). They are designed as sense-computation-actuate loops that periodically sample
sensor input and compute actuator output in order for the controlled system to reach a desired
state. The control algorithm assumes that the latency between a sensor reading and output to the
actuator is known and has little variation (jitter). Sensor readings may be available at a higher
rate, the control algorithm may down-sample the sensor data stream to a lower rate, and the
actuator may require its data at a different rate.

When the data stream is sampled, the control engineer assumes that sampling occurs
deterministically at well-defined time intervals. This means that a processing step samples every

9 We will refer to version 2 of the AADL standard as AADL V2 from this point forward in this report.

10 Feiler, Peter H. & Gluch, David. MBE Essentials: An Introduction to the SAE Architecture Analysis & Design
Language (AADL). To be published by Addison-Wesley.

40 | CMU/SEI-2012-TR-005

data stream element or that the recipient samples every other element when down-sampling. In
some cases, the sampled data is passed to the next processing step within the same execution
frame (mid-frame)—that is, the recipient processes its input within the same frame after the
sender completes its action. In other cases, the control loop assumes that the data is received by a
processing step in the next frame (frame-delayed); a control system simulation environment such
as Simulink provides these execution semantics to the control engineer.

Studies have shown that control loops are sensitive to latency jitter. Control system stability can
be affected by differences in the way application software components exchange data or in the
way the underlying runtime system schedules application tasks [Cervin 2006, Feiler 2008a].
Therefore, it is beneficial to represent the expected execution and communication timing
semantics explicitly in the runtime architecture model of a control system.

The intent of the control loop pattern is best captured in AADL by using periodic threads for
processing steps and using devices with periodic processing behavior for sensors and actuators.
The data is communicated through data ports. The semantics of AADL specify that, by default,
input is sampled at dispatch time (i.e., threads sample their data port input at the beginning of the
frame). Flow of data between the sensor, the processing steps, and the actuator is specified
through data port connections. Data port connections can be declared always to communicate data
mid-frame (immediate connection) or frame-delayed (delayed connection), such that sampling by
the recipient occurs deterministically. Data ports are annotated with a data type, and AADL
ensures that both ends of a port connection have matching types. The data type representation
may include properties to indicate the base type, the expected range of values, and the
measurement unit associated with the data. In addition, properties on the port may indicate data
stream characteristics, such as the expected data stream rate and the capability to handle missing
elements in the data stream. End-to-end flow declarations are used to specify control loop flows
of interest, for which latency and latency jitter must be determined.

Feiler discusses a number of software contributors to latency and latency jitter, such as the
scheduling protocol, the communication protocol, or the use of partitions as virtual machine
abstraction in the runtime system [Feiler 2008a]. Similarly, variations in the computer hardware,
such as processor speed, network speed, and distribution of tasks across processors affect latency
and latency jitter. Therefore, we model those aspects of the computer platform in AADL and
specify the binding of the software to the hardware.

With this modeling information, the analyses that can be used to verify the OQA include flow
latency [Feiler 2007a]; schedulability and jitter [Singhoff 2005]; near-optimal allocation options
with bin packing algorithms [de Niz 2006] that can be performed with OSATE [SEI 2009b]; and
buffer allocation and end-to-end deadlines [Thiele 2000]. If response time and latency are of
concern, see Feiler’s identification of latency contributors by the runtime architecture and runtime
system services [Feiler 2007a]. Furthermore, a computational trace of the latency calculation is
available in an Excel spreadsheet format to help in understanding the actual time contribution of
each step in the end-to-end flow [Feiler 2009a].

These resources provide guidance on how to refine the upgraded system to reduce end-to-end
latency. For example, in the case of migration to a partitioned architecture, the overrun may be
primarily driven by cross-partition communication; thus, reduction of cross-partition
communication steps is key to resolving the problem. In the case of missed deadlines, alternative

41 | CMU/SEI-2012-TR-005

near-optimal resource allocation (thread deployment) options can be explored using the bin
packing algorithms provided with OSATE [de Niz 2006, de Niz 2008a]. The problem might also
be due to nondeterministic sampling of the data stream that may result from the implementation of
the communication through shared variables or insufficient double buffering of port-based
communication. Such sampling may work well under a static timeline schedule but result in a
send/receive order race condition under preemptive scheduling or concurrent execution on
multiple processors or cores. Feiler provides guidance in identifying insufficient buffering and
user-level send-and-receive service calls as contributors to the problem [Feiler 2008b].

The VUV method takes advantage of the semantics associated with AADL modeling concepts for
a precise specification of the system. By default, AADL assumes that input through data ports is
sampled at dispatch time (i.e., at the beginning of the frame). Dispatch time sampling cannot be
guaranteed if the sampling is initiated by the application code. If each processing step performs its
own sampling, input will be sampled at the time the task executing the processing steps actually
executes on the processor. Even if sampling of input is consolidated into an input/output (I/O)
task executing at highest priority, sampling may not occur at the beginning of the frame. For
example, if the application tasks are mapped into a partition of a partitioned runtime system such
as ARINC653, then the I/O task executes at the beginning of the window slot within the frame,
which may not be the first slot. AADL gives us the ability to specify input sampling times other
than dispatch time. Partitions can be modeled as virtual processors, including the specification of
partition allocation to window slots. This information can then be used to determine whether
changes in the computer system affect end-to-end latency and latency jitter (and thus, the stability
of the control system).

When examining the actual system, we may encounter an implementation that differs from the
application intent described above. One common implementation approach is to maintain the
control data in a common data area and have processing steps read and write this data area
directly. Data received from a different processor or a device is placed into the common data area
by a high-priority I/O task at the beginning of each frame. The same task is also responsible for
providing data from the common data area to devices and to applications on other processors.
Such implementations are typically combined with a cyclic executive scheduling protocol (i.e., a
periodic task that executes different processing steps on the same processor in a fixed order). The
execution order of the processing steps determines whether data is passed mid-frame or frame-
delayed. Note that a change to a preemptive scheduling protocol affects the execution order.
Similarly, allocation of tasks to different cores of a multi-core processor results in concurrent
execution of those tasks. This results in frame-level changes to latency and latency jitter.

AADL supports modeling of shared data between multiple threads. Thus, we can model the
implementation as is. We use data access features on threads or subprograms to indicate which
data element in the common data area is accessed. Using access rights, we can indicate whether a
thread or subprogram writes or reads the data. Typically, only one processing step writes data into
a particular data element, and one or more processing steps read it. They may read it within the
same frame if they execute after the writer or in the next frame if they execute before the writer.
We can record the expected execution order in order to achieve the appropriate data flow in terms
of mid-frame or frame-delayed transfer. We can do so through either

• a call sequence for subprograms as processing steps or

42 | CMU/SEI-2012-TR-005

• an additional property on threads that indicates which threads are expected to execute later in
the same frame, effectively documenting mid-frame communication

This model can then be mapped into a data-port-based model with port connections and input
sampling during execution to explicitly document the intended data flow and support end-to-end
latency analysis. The analysis can take into account the scheduling protocol, thread binding to
processors, and sampling or queuing delays of communication protocols to determine whether the
desired latency and jitter are achieved [Feiler 2008c].

7.1.2 State Transition Communication

Many embedded systems are stateful, and exchange of state information is common practice.
These state behaviors take on different forms. A state may represent an operational mode, and a
state machine with transitions between different mode states reflects expected mode changes.
Multiple subsystems or system components may have mode-dependent behavior with respect to
the same mode. In this case, the mode state must be made accessible to them. These subsystems
or components may operate differently according to the current mode, or they may take special
action every time a mode transition occurs. In the former case, the recipient is interested in the
most recent state value, while in the latter case the recipient must be informed of every transition
event.

We may also have the situation where different subsystems have their own operational modes,
and the challenge is to coordinate these modes and their transitions. For instance, the electronic
stability control (ESC) of a car involves braking individual wheels to change the rolling forces of
the car in a curve. As part of this process, it is important to coordinate with the cruise control (CC)
system. Hence, when the ESC transitions into the braking mode, it needs to inform the CC
system. If the transition communication is lost, bad things can happen, such as the braking of a
wheel by the ESC system while the CC system accelerates.

Other forms of discrete system states exist in hybrid control systems, in subsystems and
components that offer different QoS levels, in replicated stateful system components that require
coordination of state, in the redundancy logic of fault tolerant systems, and in application-level
interaction protocols, to name a few. In all these cases, it is important to identify whether the
objective is to communicate the most recent state or for the recipient to have critical awareness of
every state transition as a separate event.

State transition communication is an application pattern that falls into the distributed
communicating state machines root cause area of system-level faults. Section 3.4.2 provides some
insights on possible analyses to use to identify upgrade impact on the embedded application
software for this pattern. We can use the AADL port communication semantics and properties to
document explicitly the intended communication of state or state transition events.

If the most recent state is of primary interest, the state managed by a component can be made
accessible to others through a data port. The recipients can sample the state at their leisure, and
port connections identify all interested parties. The recipient may miss an intermediate state if its
sampling rate is slow or if the data transfer is over an unreliable communication channel, but it
will always operate on the most recent state it received. As an alternative to using data ports, we
can use data access features to a shared data component representing the state variable. The port-

43 | CMU/SEI-2012-TR-005

based model is more amenable to distributed computer platforms, while the shared-data
component model assumes a computer system with physically or logically shared memory.

If state transitions are important, the application intent of responding to every state transition
event is best reflected in event ports or event data ports with queues. This ensures that at the
application level all events are passed on as long as the communication medium ensures
guaranteed and ordered delivery of events or messages. In other words, we want to annotate the
AADL bus and virtual bus components of the underlying computer platform with the respective
QoS property values.

It is a common practice to implement state communication by transferring the current value of a
state variable even though the state transitions are of importance. This is particularly the case if
the application primarily performs periodically sampled processing. In this case, the recipient
samples the state value at a given rate and deduces state transition events by comparing the
received state value against the previous value. For example, a button pushed in an operator
interface is mapped into a Boolean state variable. The push event is effectively transformed into a
“pulse” signal, setting the value to true for a limited time before being reset to false. If we model
such an implementation in AADL, using data port sampling or shared data component access, we
would have to augment the model with a property to reflect the length of this pulse in order to
ensure that the pulse is not missed by the sampling recipient.

For communication of state transition events, we must investigate potential causes of loss. One
possible cause is the reliability and service guarantees of the network or protocol, which can result
in the loss of part of the transmission involved in the state communication. Another potential
cause is the timing of the communication and the sampling by the recipient, effectively a
potentially nondeterministic race condition between the transfer and the input sampling. Both
causes of loss must be evaluated along with the consequences of such a loss. An example of an
analysis technique that can help in this process can be found in a paper by de Niz [de Niz 2008a].
The problem might also be in the implementation of the communication through shared variables
or insufficient double buffering of port-based communication. Feiler provides guidance in
identifying buffering and user-level send-and-receive service calls as contributors to the problem
[Feiler 2008c].

7.1.3 Sensor/Signal Fusion

Sensor/signal fusion is sensitive to the sampling times of the fused data. That is, if two signals
from two different sensors are being fused in a particular thread, the sampling times of these two
signals must be close enough to each other that they can be considered simultaneous readings. As
a result, we model end-to-end flows from the sensor to the fusion thread and evaluate their flow
latency. The domain expert (control system engineer or signal processing engineer) must evaluate
whether differences in the flow latency between the data streams being fused are within the
allowable range. The modeling elements of the control loop are sufficient for this analysis.

Sensor/signal information represents some physical system state. If the state information is sizable
and communication bandwidth is low, state changes are often communicated, a situation that is
effectively equivalent to the state-transition-communication issue discussed in Section 7.1.2. For
example, a radar system may track objects and communicate changes in the form of track updates.
Every state change is important and must be communicated and processed in order for the system

44 | CMU/SEI-2012-TR-005

to maintain its consistency and data integrity. Therefore, we want to reflect in the AADL model
whether the sensor/signal data represents state or state changes and then examine whether the
particular implementation of sensor/signal state ensures delivery of state changes.

7.1.4 Message Processing and Fusion

Message processing and fusion may deal with time-sensitive fused data. That is, if two messages
from two different sources are being fused in a particular thread, the time stamp of the two
messages must be close enough to each other so that they can be considered the same observation.
We define end-to-end flows from each source to the fusion point and evaluate their flow latency.
The domain expert (mission system engineer or mission expert) must evaluate then whether the
time shift between the message streams is within the allowable range.

We model the intent of the application through event data port communication with queues. End-
to-end latency analysis takes into account queuing latency. This allows us to determine how long
messages from different streams must be held in queues (i.e., the size of these queues, in order to
achieve time-consistent fusion).

We explicitly model the concept of time stamping by a time server component or by utilizing the
time service on a processor. If the system is asynchronous (i.e., if different processors operate
with separate clocks), we use the synchronization domain notion introduced in AADL V2 through
the Reference_Time property.

We also want to reflect, as a property of the message stream (i.e., the ports through which the
message streams are communicated), whether the fusion algorithm assumes that every message
arrives or can compensate for missing messages on one or more of the data streams. We can then
apply the same analysis as for state transition communication to ensure that the application
implementation meets the intent, even when changes are made to the computer platform or
application deployment binding.

7.1.5 Replication

Replication is a common technique for achieving redundancy in order to improve the reliability of
a system. When modeling a replication pattern, we must consider three aspects of the pattern.
First, the replicated component itself has state, and we have to ensure that this replicated state is
maintained consistently between the two replicates. Maintaining state consistency between
replicates is typically achieved at switch-over when the primary component fails, or state is
periodically exchanged when the replicates are active. In the former case, we specify data port
connections between the replicates and indicate that they are active only during a mode transition.
In the latter case, we represent the periodic interchange through ports and specify the rate of data
exchange, which may be different from the processing rate of the replicated component, as a port
property.

The second aspect of the replication pattern is the redundancy logic that manages the replicated
components. The logic reflects whether the pattern uses hot or cold standby in a primary/backup
configuration [Budhiraja 1992] or whether all replicates are active and a voter or observer
examines their output. The logic may also include the ability of an operator to control whether to
operate in critical mode with all active replicates or in noncritical mode with a primary/backup

45 | CMU/SEI-2012-TR-005

configuration. In non-critical mode, the operator has the ability to choose which replicate is the
primary (e.g., in a dual-flight guidance system) [Miller 2005].

The redundancy logic can be specified in AADL as modes, complemented with Behavior Annex
subclauses, and validated for correctness under nominal operation and under various failure
conditions. For instance, in a primary/backup replication, the failure of the communication
channel between the replicates can lead to having two primaries or no primary at all. The
redundancy logic itself may be replicated and distributed across redundant processors together
with the replicated application software component. Effectively, we have a state-transition-
communication pattern with two identical state machines reflecting the current (critical/non-
critical) operational mode, and we have two state machines that are the mirror image of each other
reflecting which instance of the primary/backup replication is active. Incorrect coordination logic
or incorrect implementation of the coordination can lead to loss of transition events and safety
hazards. Examples of analysis of these situations can be found in work by Miller and by de Niz
[Miller 2005, de Niz 2006].

The third aspect of replication patterns to be considered is the monitoring of output of replicated
components to detect possible faulty component behavior. This monitoring may take the form of
an observer pattern with the output being monitored in parallel with its being sent out or of a
guard pattern in which the output passes through a voter before becoming available as output. The
two variants of the redundancy pattern, illustrated in Figure 7-1, differ in that the first has
transient fault propagation (i.e., bad data output is sent before being detected by the observer) and
the second results in longer latency. We want to record these effects for each pattern to ensure that
components receiving the output can handle transient bad data or increased latency.

Figure 7-1: Observer and Guard Redundancy Pattern

7.1.6 Shared Data Communication

The shared data communication pattern may represent a particular application implementation
(e.g., communication between threads via shared variables such as the communication semantics
of Simulink blocks). We have already addressed this issue in previous sections. Here we focus on
application architectures, whose intent is to provide shared data communication. Examples of
such architectures are blackboard architectures (global common data area), database systems, and
systems maintaining situational awareness.

The application intent of such architectures is to provide read-and-write access to a shared data
component for a number of application tasks by coordinating concurrent access to ensure data
integrity. In AADL, we express such an architecture via data components; connections from data
access features are modeled by application components such as threads. An access right property

46 | CMU/SEI-2012-TR-005

of the data-access feature indicates the desired read-and-write access. A concurrency control
protocol property on the data component indicates the mechanism used for managing concurrent
access. Some implementations may rely on a particular scheduling protocol, such as non-
preemptive scheduling and data access from a single processor to ensure mutually exclusive
access. We need to ensure that such assumptions about the runtime system are valid and that the
application source code actually uses the specified mechanism.

In distributed systems, a common way to implement a shared data communication architecture is
through a server. AADL supports modeling of server architectures through subprogram access
features and connections. The server is defined as a process with threads that provide access to the
services (provides subprogram access). Users of the service require subprogram access, and
access connections connect the two. Properties are used to indicate whether a server is multi-
threaded in that it can service multiple service requests simultaneously (a standard property in
AADL V2).

7.1.7 System Partitioning

System partitioning is an architectural pattern that provides isolation between application
components through processor and memory virtualization concepts in the runtime system. System
partitioning can be used to meet safety and security requirements. There are two aspects to
modeling in this architectural approach: modeling of desired isolation regions in the application
and modeling partitions as logical resource partitions. The ARINC653 Annex of the AADL
standard provides guidance on how to represent ARINC653-compliant system architectures in
AADL [SAE 2011].

The process concept in AADL represents a protected address space that is expected to be enforced
at runtime by the hardware and operating system. In other words, threads operating within a
process cannot affect data in other processes except through explicitly declared communication
channels, such as ports and access to shared data. The computer platform is represented by
processor, memory, and bus components that are tagged with the security or safety level for which
they have been approved. In addition, we can use the AADL V2 virtual processor and virtual bus
concepts to represent logical partitions of processors and buses. A virtual processor represents a
virtual machine that enforces both space and time partitioning on a processor. A virtual bus
represents a virtual channel that ensures bandwidth and no cross-channel data leakage. When an
application with security and safety requirements is bound to the computer platform, we can
validate that the safety and security requirements expressed at the application level are ensured by
the computer platform. Further modeling guidance can be found in work by Delange, Pautet, and
Feiler [Delange 2009a].

For the purpose of reliability and safety analysis, the Error Model Annex of the AADL standard
[SAE 2006] provides a way of capturing hazard and fault information as annotations to the AADL
architecture model of a system [Feiler 2007b]. From this annotated model, appropriate analysis
models are generated to perform these different analyses consistently with the architecture.

For the purpose of security analysis, the SEI has defined a property set to represent security
models, such as Bell-LaPadula, in AADL models [Hansson 2008]. Security levels and data
categories are used to identify the degree of protection desired for data communicated through
ports and the credentials of tasks operating on the data. Similarly, application components can be

47 | CMU/SEI-2012-TR-005

characterized with different safety levels under which they are expected to operate. Given this
information, we can establish whether the way the application components interact violates
security and safety rules at the logical level.

7.2 OQA Modeling Strategies

For each of the OQAs presented in Table 6-4, we discuss what kind of modeling is necessary,
how to perform this modeling, and what kind of analysis is needed.

7.2.1 Hard Deadlines

Some applications require that processing be completed before a well-defined time—the deadline.
Otherwise, the resulting output is of little value. For that purpose, we need to model the relevant
tasks, specify their dispatch protocol as time-triggered (periodic) or as event/data-triggered
(aperiodic, sporadic, or timed), their deadline relative to their dispatch time, and their resource
demands on the processor in terms of execution time. In the case of event/data-triggered tasks, we
also specify arrival rates with an upper bound. Once the tasks are bound to a processor with a
specified scheduling protocol, we can use an appropriate scheduling analysis tool to determine
schedulability (i.e., whether all deadlines are met).

Schedulability analysis assumes that task WCETs are not exceeded and that there are no
additional resource demands on the processor not reflected in the model. Furthermore, it is
desirable to perform such resource analysis early in the development, at which time execution
times may be initial estimates or task details may not even be known. We can address uncertainty
in the specified execution time of tasks by performing sensitivity analysis with respect to
schedulability (i.e., examine by how much execution times can vary before the system becomes
unschedulable). If we do not have the details of a task architecture yet, we may represent
budgeted resource demands of subsystems (i.e., the rate at which such subsystems intend to
operate) and compare them against the available resources on a processor. This provides an early
insight as to whether exceeding resource demand will result in missed deadlines.

A similar resource scheduling analysis can be performed for networks. The resource demand for
communication is determined by the port connections between subsystems and tasks that are
bound to particular buses. The bus protocol (i.e., a sampling protocol such as 1553B or CAN-bus
or queuing message protocols) determines the type of analysis to be performed to meet
communication deadlines.

7.2.2 Soft Deadlines

Soft deadlines are similar to hard deadlines; one difference is the consequence of missing the
deadline. Two scenarios are possible here. One scenario is that a missed deadline is acceptable but
is treated by the recipient of the data stream as a missing data element. This is sometimes referred
to as firm deadline. Schedulability analysis can determine at what rate missed deadlines are
encountered. This rate can then be compared against the miss-rate that is acceptable to the
recipients, as indicated by a property on their incoming ports.

The second soft deadline scenario is that completion time has a certain distribution that may be
specified or determined through queuing analysis. Some completion times later than the specified
deadline are acceptable as long as they are bounded. In this case, the recipient will still process the

48 | CMU/SEI-2012-TR-005

data, but again may specify an acceptable upper bound or an acceptable average for the age of
received data. Again, scheduling analysis can provide results that can be validated against the
expectations of the recipient.

7.2.3 End-to-End Deadlines

End-to-end deadlines can be analyzed for end-to-end flows. For these, then, it is important to
model the end-to-end flows of interest with an associated end-to-end deadline. With this model,
the flow latency analysis can be run to verify that the latency is within bounds [Feiler 2007a,
Feiler 2008a]. In addition, various analysis tools (e.g., Cheddar [Singhoff 2005] and Rapid RMA
[Tri-Pacific 2011]) can be used for analysis more specific to the scheduling policy and network
protocols of interest in our architecture.

7.2.4 Latency Jitter

Jitter can be evaluated for end-to-end flows. We determine jitter bounds through end-to-end
response time or latency analysis, taking into account best-case execution time and WCET, as
well as variation in other contributors to latency and response time, such as communication and
queued processing or preemption [Feiler 2007a].

7.2.5 Throughput and Utilization

Throughput refers to the amount of processing supported by a system, typically in terms of
number of processed items per unit of time. Utilization refers to the degree to which computer
platform resources are used to perform the tasks.

Throughput analysis can be supported in a stochastic manner if distributions of arrival rates and
processing times and rates are provided. These can be expressed through properties on tasks and
ports and used as input to a stochastic analysis tool. In the case of communication throughput,
these would be property values indicating output rates and data sizes at the application level, as
well as protocol overhead and transmission capacities of the network components of the computer
platform. Early in the development process, such data may not be available and the details of the
task architecture may not be known. In this case, we can assign rate and processing budgets to
application subsystems and available processing capacity to computer platform components and
use those to calculate early throughput estimates. Note that the model has a record of the
assumptions used in the calculation of these estimates.

Utilization is determined as part of scheduling analysis. In the case of stochastic workloads, the
workload may be reflected as a statistical distribution. Early in the development process, we can
use resource budget estimates associated with the system architecture model at the level of detail
available at the time (e.g., subsystem or task-level model) to determine the estimated utilization.

7.2.6 Reliability and Availability

Reliability and availability reflect the fact that system components may fail and, as a result, the
system as a whole may not be able to provide service. AADL has an Error Model Annex [SAE
2006] that allows us to associate probability of fault occurrence in system components and
probabilistic error propagation, taking into account error masking and repair. Detailed guidance to
dependability modeling with the Error Model Annex is provided in Dependability Modeling with

49 | CMU/SEI-2012-TR-005

the Architecture Analysis and Design Language (AADL) [Feiler 2007b]. This error modeling
capability supports hazard analysis, failure mode and effects analysis (FMEA), fault tree analysis
(FTA), and stochastic reliability and availability analysis.

Reliability and availability are improved with redundancy. Physical components such as sensors
and other devices as well as computer platform hardware components are replicated such that a
backup component can fill the void when a component fails. Software that runs on failing
computer hardware must be replicated and bound to the hardware replicate in order not to lose
software functionality. In other words, we must ensure that different copies of the same software
are deployed on different instances of computer hardware. This requirement can be expressed in
AADL by a property indicating that a replicated component must not be collocated. This
constraint can then be validated for a given deployment binding, or an analysis tool determining a
deployment binding may take this constraint into account [de Niz 2008b].

Reliability and availability analysis makes a set of assumptions about the system, the lack of
collocated software replicates being one example. Other assumptions are the consistency and
correctness of the redundancy management logic and a source code implementation that complies
with the logic specification. The validation of this assumption has been discussed in Section 7.1.5.

7.2.7 Security

While there can be multiple security concerns that could be modeled in AADL, we focus on
confidentiality with three aspects: confidentiality, integrity, and sanitization. Confidentiality
addresses concerns that sensitive data should only be disclosed to or accessed by authorized users
(i.e., enforcing prevention of unauthorized disclosure of information). Data integrity is closely
related, as it concerns prevention of unauthorized modifications of data.

To validate the confidentiality of a system, we ensure that a modeled system conforms to a set of
common conditions that support system confidentiality independent of a specific reasoning
framework for security. We map concepts of subjects operating on objects by permissible access
(read, execute, append, and write), found in the Bell-LaPadula model, into components and ports
in the AADL model, enabling us to model and validate security at both the software and hardware
levels [Hansson 2008]. For that purpose, we have defined a set of properties to represent security
levels and information categories to identify the degree of protection desired for data
communicated through ports and the credentials of tasks operating on the data. Application
components represent the subject with permitted security-level and information categories.
Annotated ports represent the object (i.e., the data type and the security level and category of the
data). Connections in the AADL that represent information flows and sanitation steps are
indicated as part of a flow specification.

With this data, it is possible to discover incorrect communication of confidential data (to a
component that does not have the privilege to access it) or incorrect sanitization structures. The
security plug-in in OSATE can be used to analyze the security problems in the architecture
[Hansson 2008].

In addition, we can model the system partitioning in the runtime system to ensure that the
computer platform supports information isolation and the application deployment binding is
consistent with the partitions as discussed in Section 7.1.7.

50 | CMU/SEI-2012-TR-005

7.3 Computer System Resource Management

The actual performance of processors available to the application is affected by the overhead of
the operating system and other infrastructure services, as well as by resource contention between
applications and system services sharing resources. The operating system overhead of an
application can be reflected in net processor cycles available to the application, or it can be
included in the execution time demands of the application thread. We can also model the
operating system services as a second runtime architecture layer with its own thread model to
capture concurrent processing activity at that level. We can do so using virtual processors and
virtual buses or by creating a separate runtime architecture model of the operating system layer
and associating it with the Implemented As property to the computer system abstraction of the
original model.

Resource contention affects resource availability to the application. In this section, we review
three important issues that affect real-time performance:

1. bounds on priority inversion

2. bounds on cross partition interference under IMA

3. rate group schedulability margin

Although we use avionics as an example, the techniques discussed here are also generally
applicable to other real-time embedded systems.

7.3.1 Bounds on Priority Inversion

In a static priority scheduling setting based on RMA, priority inversion can occur when a high-
priority task is delayed by one or more lower priority tasks. Bounds on priority inversions, if not
calculated correctly, will render an RMA analysis invalid, leading to unexpected timing failures
during integration or deployment. Bounds on priority inversion must be computed for each type of
shared resource, especially bounds on the duration of priority inversion on

• CPU sharing

• I/O interfaces

• each communication switch

The basic concept of priority inversion is now well known. However, a significant number of
engineers focus only on priority inversion in the CPU and fail to analyze priority inversion in
complex I/O interfaces such as a Peripheral Control Interface (PCI) bus or a network switch. As a
result, real-time performance failures during system integration or deployment occur in systems
with a heavy I/O or communication load.

The experimental investigation of priority inversion bounds must be guided by the actual system
architecture and deployment configuration rather than a benchmark configuration. For example, a
PCI bus has many different physical configuration and bus transaction types. However, the bound
on priority inversion is specific to these physical configuration and selected bus transaction types.
As another example, priority inversion for application tasks depends on the specific real-time
operating system and the real-time synchronization protocol that it implements.

51 | CMU/SEI-2012-TR-005

7.3.2 Bound on CPU Stall Induced Worst-Case Execution Time (-) Inflation

RMA uses each task’s WCET as part of the required inputs for schedulability analysis. Many
developers assume that the WCET of a task remains the same when it runs alone or runs together
with other tasks. Unfortunately, this is not true.

As illustrated in Figure 7-2, modern “smart” I/O devices can be independent bus masters. If a
task’s cache was first invalidated by prior tasks, the current task will try to reload the cache with
instructions across the front side bus. If there is an ongoing bus transaction on behalf of other
tasks, the filling of the cache can be significantly slowed because a typical bus master uses a
round-robin sequence for competing bus transactions. This bus contention results in a significant
slowdown of the task execution. When a PCI bus is used, the execution time of the task has been
found to increase as much as 37% in laboratory experiments [Nam 2009]. Indeed, this a key
reason for frame overruns that frequently occur when there is heavy I/O.

 Figure 7-2: Resource Contention on PCI Bus

CPU stall-induced worst-case execution time (SWCET) has ominous implications for modern
IMA architectures because many users of IMA architectures mistakenly believe that the CPU
cycles allocated to each ARINC653 partition are isolated from those in other partitions. When
tasks in the one partition invalidate the cache of a later partition, tasks in the later partition must
reload their cache via the front side bus. The bus is subjected to the interference of direct memory
access (DMA) from other partitions. Thus, a partition dedicated to a safety-critical, real-time
application can be adversely affected by I/O for non-safety-critical applications in other partitions.
The solution for this problem is to have an integrated CPU and I/O real-time architecture, which
is, however, outside the scope of this report. We are concerned with calculating the bound on
SWCET, especially in the context of IMA because most avionics systems have widely adopted
ARINC653.

To measure the SWCET for IMA systems, we must do the following:

1. Flush the cache before the application in the next partition starts.

2. Conduct heavy DMA transfers to account for worst-case DMA workload on the front side
bus as permitted by the existing design.

52 | CMU/SEI-2012-TR-005

3. Measure the increase of WCET as compared with the case in which there is no DMA on the
front side bus.

4. Add SWCET to WCET in the RMA analysis for all of the hard-real-time tasks.

Schedulability analysis and bus delay analysis is done using a tool called ASIIST (Application
Specific I/O Integration Support Tool) [Nam 2009]. An analysis plug-in to OSATE, ASIIST reads
in AADL models and can perform schedulability analysis with I/O cache fetch interference and
I/O bus delay analysis for an IMA system configuration.

7.3.3 Rate Group Schedulability Margin

In a real-time system using fixed-priority scheduling or rate group scheduling, a task can miss its
deadline with a workload considerably less than 100%. A rate group schedulability margin can be
estimated by using exact schedulability analysis to compute the worst-case margin for each rate
group (margin = deadline - worst-case completion time). The system peak load is the maximum
utilization of the system given the minimal margin over all of the rate groups. However, margin
and peak load computation is correct only if the estimation of WCET, the bound on priority
inversion, and the bound on SWCET are all valid.

Note that this computation for peak load is very different from the peak load measurement
generally reported for most computer systems. Most peak load values are generated by measuring
the utilization of a background task or by summing the measured loads of each rate group. These
methods for computing peak load lead to highly optimistic views of the worst-case system
performance.

During system integration, an experimental measure of rate group schedulability margin and peak
load should be conducted to guard against inadvertent mistakes in parameter estimation, as
follows:

1. Replace all tasks not yet written with dummy tasks using busy loops and dummy I/O.

2. Run all the tasks under stress scenarios, including lower priority tasks. Running low-priority
tasks is important to check for priority inversions that may have been overlooked in analysis.

3. As permitted by the design, the engineer should run tests with heavy I/O workload and heavy
application CPU workload concurrently.

4. Program the logic analyzer and capture the minimum schedulability margin for each rate
group task (margin = deadline - completion time).

5. Plot the schedulability margin for each task: (system peak load =1.0 - the minimum of the
task schedulability margins).

IMA is relatively new, and many engineers and even system architects are not discovering until
system integration test that interpartition interference can be as high as 30-40%. Keeping inter-
partition interference to a minimum requires the following steps:

1. Partition structures with low-priority inversion and low interpartition interference.

2. Measure, validate, and track bounds of priority inversion and interpartition interference.

3. Develop a schedulability model.

4. Estimate, measure, and track schedulability margin and peak load.

53 | CMU/SEI-2012-TR-005

8 Broader Applicability

Because the key stakeholder for this report is the Army PEO for Aviation, this report is
intentionally focused toward avionics platform upgrades. However, these practices are applicable
to other organizations that build and manage embedded systems. Examples of systems with
embedded software that could benefit include satellite flight software, tactical communication
systems, and terrestrial war-fighting vehicles. In addition, the VUV method is applicable for a
wide range of problems related to obsolescence of hardware, technology refresh, and
requirements for new capability.

To support the assertion that there is broad applicability for this work, we have included a few
additional examples of mismatched assumptions that might have been avoided if architecture-
centric, model-based engineering practices had been applied. One example of mismatched
assumptions is the translation of functionality into application software causing the destruction of
Ariane 5 during the rocket’s maiden flight. Overflow of a 16-bit signed integer variable in reused
Ariane 4 software to perform a function that was “not required for Ariane 5” was not caught due
to a disabled handler [Wikipedia 2010]. The reason for the overflow was the representation of
vertical velocity, which exceeded the 16-bit signed integer range due to a different altered flight
path. A consistency check of value ranges between the value range of the variable and the
expected value range of the domain parameter could have discovered this inconsistency.

In the late 1990s, a well-intentioned attempt to improve performance of a satellite ground station
mission software had unplanned side effects. The subsystem tracking objects close to a spacecraft
had originally sent a complete map of the objects to the command and control subsystem. In order
to reduce the load on the network, a change was made to communicate only changes to the map.
Unfortunately, this communication occurred over a network protocol that drops packets under
overload conditions. As result, during integration testing, it was discovered that state changes
randomly were not delivered. In other words, the data representation of the communicated data
stream assumed guaranteed delivery. A consistency check between the communication QoS
assumption of the application and the QoS provided by the protocol could have discovered this
inconsistency.

When laptops with dual-core processors came out, iTunes crashed randomly when ripping a
music CD [Apple 2005]. iTunes was designed as a multi-threaded application, with one thread
determining the decibel level of tracks while the second thread converted the audio. A single-
processor system executed first one thread, then the second thread. On a dual-core processor, the
two concurrently executing threads were attempting to update the same music catalog without
explicit synchronization. In other words, the original implementation assumed sequential
execution of tasks to assure mutually exclusive access without using a synchronization
mechanism. Similarly, as existing avionics code migrates from a federated system using a cyclic
executive to an IMA architecture, concurrency race conditions may be encountered that did not
exist in a federated setting due to strict execution order and dedicated processors. Testing for such
race conditions may be very difficult. A consistency check of the assumed mutual exclusion
mechanism for shared data access through sequential execution against the multi-core task
deployment with concurrent task execution could have discovered this issue.

54 | CMU/SEI-2012-TR-005

When system components become virtualized, assumptions about physical redundancy will be
violated. In 1986, the internet, then ARPA-net, was accidentally split into two networks [Zakon
1993]. All seven New England trunk lines, which had previously been separate physical lines,
were severed when AT&T suffered a fiber optic cable break that lasted 11 hours. When AT&T
had converted to fiber optic cable, these physical trunk lines became logical trunk lines on this
much higher bandwidth connection, losing all physical redundancy [HOC 2001]. The same
virtualization occurs when embedded software is migrated to ARINC653 partitions or hard drives
are partitioned into multiple logical drives [Wikipedia 2006]. A collocation consistency check
could have discovered this inconsistency.

These additional examples of system-level faults have been reflected in the root cause areas of
system-level faults identified in Section 3.4. In other words, we see broad applicability for
architecture-centric, model-based engineering and the VUV method across many application areas
in the Army and beyond.

55 | CMU/SEI-2012-TR-005

9 Conclusion

In this report, we introduced readers to the VUV method for analyzing the impact of platform
change on embedded systems. We described the VUV method steps and introduced the readers to
the ADC, which provides guidance for modelers on what problems to model and how to model
them, based on hands-on experience and real-world research.

We provided a history of the AADL standard, an overview of what the standard is, and some
background regarding SEI and Army ASSIP work related to the AADL standard. We concluded
the report with a discussion of the broad applicability for architecture-centric engineering
supported by AADL models and the VUV method across the Army and beyond. We provided
examples that demonstrate the wide range of domains impacted by system failure due to
architectural mismatch.

In a pilot case study, we will use the VUV method to analyze the impact of a platform upgrade to
the Apache helicopter. We will summarize the outcome of the case study and provide an
assessment of the value of applying the VUV method to analyze the impact of the Apache
platform upgrade in a separate report.

56 | CMU/SEI-2012-TR-005

57 | CMU/SEI-2012-TR-005

Appendix: Modeling with the SAE AADL

The SAE AADL standard provides formal modeling concepts for the description and analysis of
an application system architecture in terms of distinct components and their interactions [Feiler
2006]. The AADL includes software, hardware, and system component abstractions to specify
and analyze real-time embedded systems, complex systems of systems, and specialized
performance capability systems and to map software onto computational hardware elements. The
AADL is especially effective for model-based analysis and specification of complex real-time
embedded systems.

In model-based analysis, the AADL supports the development of a comprehensive architecture
model of a system. This single representation drives diverse analyses in support of software
assurance practices throughout the development life cycle. These analyses address top-level
concerns including requirements, system design, and software architecture. In addition, we can
use AADL models to specify and validate compliance between the model and the source code.

SAE AADL: The Language

The core AADL modeling elements are organized into Components, Interactions, and Properties.
Components represent distinct logical and physical entities that compose a system. Their external
interfaces are defined as features of a component type. Their internal structure is defined using
subcomponent declarations within a component implementation. Modes enable the modeling of
dynamic reconfigurations of a system, including alternative properties, features, subcomponents,
calls, and connections.

Interactions among components are established using explicit connections and software call
declarations. These connections represent the transfer of control and data through ports; explicitly
define access to data, buses, and subprograms; and define the exchange of data through
subprogram parameters. Other component interactions, including the binding of software to
hardware, are declared explicitly by assigning values to binding properties.

Properties, applied to various modeling elements, define the characteristics required for a
complete architectural description, an executable implementation, and comprehensive analyses of
a system. Values assigned to properties establish specific attributes of components and their
interactions (e.g., the dispatch protocols supported by a processor), the binding of software
components to hardware components (e.g., threads bound to processors), and the logistical aspects
of deploying software (e.g., the name of a software component’s source code file). There are
standard (predeclared) properties defined within the language. For example, standard properties
include the execution time for a thread, the speed of a processor, and the smallest independently
readable and writeable unit of storage of a memory component. In addition, we can define new
properties and associate them with AADL elements.

Component Abstractions

Within the AADL, a component is characterized by its identity (a unique name and runtime
essence), possible interfaces with other components, distinguishing properties (critical

58 | CMU/SEI-2012-TR-005

characteristics of a component within its architectural context), and subcomponents and their
interactions. In defining an architecture, we organize components into hierarchical runtime
structures that can include dynamic reconfiguration using operational modes and mode
transitions.

In addition to interfaces and internal structural elements, we can define other abstractions for
component and system architectures. For example, abstract flows can be identified and associated
with specific components and interconnections to perform flow analysis. These additional
elements can be included through core AADL language capabilities and the specification of a
supplemental annex language. The component abstractions of the AADL are separated into three
categories: application software, execution platform (hardware), and composite. We have
summarized these component categories in Table 9-1. Note that the execution platform category
represented as “Computer System and Mission Platform.”

Table 9-1: Component Categories

Application Software
thread Active component that can execute concurrently and be organized into thread groups

thread group Abstraction for logically organizing thread, data, and thread group components within a
process

process Protected address space whose boundaries are enforced at runtime

data Data types and static data in source text

subprogram Concepts such as call-return and calls-on methods (modeled using a subprogram
component that represents a callable piece of source code)

Computer System and Mission Platform

processor Schedules and executes threads

memory Stores code and data

device Sensors, actuators, or other components that interface with the external environment

bus Interconnects processors, memory, and devices

virtual processor Virtual machines, partitions, and hierarchical schedulers

virtual bus Virtual channels and protocols

Composite

system Composite components that can consist of software, computer system, and mission
platform components

abstract Generic component that can be refined into any of the above component categories

Interactions

The AADL standard includes runtime semantics for component interactions including data
sampling via data ports, message passing via event data ports, event passing via event ports,
synchronized access to shared components via data access features, and remote service calls via
subprogram access. Connections define relationships between ports, access features, subprogram
parameters, and feature groups. Calls define relationships between calling components (threads
and subprograms) and subprogram interfaces. Bindings of software components to hardware
components are declared through property associations. We have summarized interactions and
component features in Table 9-2.

59 | CMU/SEI-2012-TR-005

Table 9-2: Interactions and Component Features

Connections

port Directional exchange of sampled data, events, and messages among components
between ports or between feature groups of components

access
Relationships that enable multiple components to access a common data or bus
component

parameter Relationships among data elements associated with subprogram calls

feature group Interaction between a collection of features represented as a single relationship

Calls

subprogram Relationships within component implementations that enable synchronous call/return
access to subprograms

Bindings

binding Relationships that define the mapping of software components, connections, and
subprogram calls to hardware components

Properties

Properties define characteristics for the elements that compose an AADL model. Each property

has a name and a type. A property type establishes the values that can be assigned to a property.

There are AADL standard (predeclared) properties and property types. Collectively, these

standard properties and property types encompass common attributes for the elements of the

language. For example, a standard property of a port is Required_Connection, which is of

standard type aadlboolean and has a default value of true. You can use a property association to

assign the value false to this property for a port, allowing that port to be unconnected.

The AADL also permits users to define additional properties and property types. These are defined

in property sets. For example, a new property for system components is declared with a name and a

type for the property, and that property is applied to all system components in a model. The type

declared for a new property may be a standard type (e.g., aadlinteger), or a new type that has been

declared using a property type declaration.

AADL Annexes

We can use AADL properties and language extensions to create new and focused architecture
analyses. Property sets can be declared that enable specialized analyses such as resource
utilization. With the extension capabilities of the language, we can add additional models and
properties.

Several such annexes have been defined as SAE AADL Annex standards. The Error Model
Annex standard [SAE 2006] allows error sources, component error behavior, and error
propagation to be associated with AADL models. These annotations can serve as a source for
Functional Hazard Analysis (FHA), Fault Mode and Effects Analysis (FMEA), and Fault Tree
Analysis (FTA), as well as reliability and availability analysis. The Behavior Annex standard
[SAE 2011] supports state-based specifications to be associated with components to characterize
their interaction behavior, concurrency control behavior, and functional behavior. The ARINC653
Annex standard [SAE 2011] supports specification of ARINC653 standard compliant
architectures. The Data Model Annex standard [SAE 2011] supports association of data models
expressed in other notations into an AADL architecture model.

60 | CMU/SEI-2012-TR-005

Modeling Application Components

When modeling an embedded application, we can take two approaches: capturing its architecture
as depicted in a design document or representing those system elements relevant to evaluating
specific use scenarios. In the former case, we translate architecture diagrams into an AADL model
using the graphical editor. The challenge in this case is to pick the appropriate AADL concepts to
represent the architecture.

In the following, we outline some factors for consideration in modeling subprograms, threads,
ports, and processes.

1. subprograms with the following characteristics

a. execution time—specifies the time it takes to execute the program running by itself as a
range between best-case and worst-case

b. internal flows—specify the control and data flows that go from an input parameter to an
output parameter of the subprograms

c. input and output parameters—the parameters passed into the function

d. input and output events—the parameters where the result of the computation is
expected

2. threads with the following characteristics

a. input/output ports—the input control and data into and out of the threads. These ports
are then connected to other threads’ ports or to the containing process ports.

b. activation pattern—specifies whether the thread is activated periodically or only
activated when an event arrives

c. periodicity—must be specified if the thread is periodic

d. deadlines—specify the maximum time that the thread can take to complete its execution
starting from its activation

e. subprogram calls—the sequence of calls that are executed every time the thread is
activated

f. connections to/from calls—the mapping from the thread ports to the parameters of the
calls. This mapping is contained in each call.

g. flows—specify the control and data flow from the thread ports to the subprogram calls
and between the subprogram calls

h. assignment of threads to processors—defines where the threads run and how to
schedule them

3. ports with the following characteristics

a. data port—represents communication of most recent state value; it is typically used for
sampled processing

b. event port—represents queued communication of events. This port is used for
triggering thread execution or mode transitions as well as for sampled processing of
alarms

c. event data port—represents queued communication of data. This port is used for
processing of complete message/data streams.

61 | CMU/SEI-2012-TR-005

4. processes with the following characteristics

a. input/output ports—connected either to other processes’ ports or to the internal threads’
ports. These ports parallel the input/output ports for threads.

b. flows—represent the control and data flows between the process’ internal threads or
between the threads and the process’ ports

c. threads—the internal threads of the process

d. connections to threads—the connections between the threads’ ports and the thread and
processes’ ports. Timing constraints on sampled communication by periodic threads is
specified as immediate, delayed, or sampled connection. Immediate means that data is
always passed within the same frame by delaying the execution start of the recipient
thread. Delayed means that passing of the data is always delayed to the next frame.
Sampled means that the recipient samples data at dispatch time independently of the
execution of the sending thread.

Modeling the Computer Platform

AADL offers the component categories of processor, memory, bus, and their groupings into
systems to represent a wide range of computer system architectures, as has been demonstrated
effectively in Computer Structures: Readings and Examples [Bell 1971]. Users can introduce
different processor, bus, and memory types as abstractions of computer system components. For
example, a processor type may represent bare processor hardware of an Intel X86 CPU, or it may
include the operating system software (e.g., Linux). Similarly, bus types represent communication
hardware and services such as PCI bus or Ethernet with or without different protocol stacks.
These interconnected components are modeled by bus access connections between the respective

hardware component and a bus using the system component.

When defining a processor type, we specify its scheduling policy and its processor speed and
speed scaling factor relative to a reference processor. We also specify various performance
parameters such as thread and process context switch time, supported priority levels, memory
requirements for operating system software, protocol support, and reference to a detailed
hardware description in a notation such as very high-speed integrated circuit (VHSIC) Hardware
Design Language (VHDL). When defining a bus type, we specify its bandwidth, transmission
time parameters, supported hardware component connectivity, provided QoS guarantees, and
supported protocols.

Application software is bound to the computer system by binding source code and application
data to memory. Similarly, application threads are bound to different processors, and port
connections are bound to different buses. This provides the means to determine the workload on
memory, buses, and processors based on application data (execution times, memory footprint, and
communicated data volume).

We use the virtual processor concept to represent virtual machines such as ARINC653 partitions
as well as hierarchical schedulers. Partitions also represent fault isolation boundaries. We use the
virtual bus concept to represent virtual channels and communication protocols. It allows us to
capture protocol stacks and record QoS properties such as guaranteed delivery, ordered delivery,
and secure delivery of data. Assumptions about protocols and schedulers, as well as deployment

62 | CMU/SEI-2012-TR-005

on networks and processors made by the application, are recorded as properties on runtime
architecture components such as threads and connections. A combination of virtual processor and
virtual bus can be used in representing security levels and regions. Additional modeling guidance
can be found in work by Delange [Delange 2009a, 2009b].

63 | CMU/SEI-2012-TR-005

Glossary of Acronyms

Acronym Definition

AADL Architecture Analysis and Design Language

AB3 Apache Block Upgrade III

ADC Architectural Dependencies Catalog

ADIRU Air Data Inertial Reference Units

AED Aviation Engineering Directorate

AMRDEC Aviation and Missile Research Development and Engineering Center

ARINC Aeronautical Radio Incorporated

ASIIST Application Specific I/O Integration Support Tool

ASSIP Army Strategic Software Improvement Program

ATAM Architecture Tradeoff Analysis Method

AVSI Aerospace Vehicle Systems Institute

CC cruise control

CD compact disk

COTS commercial off-the-shelf

CPU central processing unit

DARPA Defense Advanced Research Project Agency

DMA direct memory access

ESC electronic stability control

FHA Functional Hazard Analysis

FTA Fault-Tree Analysis

GAO General Accounting Office

I/O input and output

IMA Integrated Modular Avionics

IV&V Independent Verification and Validation

MBE model-based engineering

MIPS Microprocessor without Interlocked Pipeline Stages

NASA National Aeronautics and Space Administration

NIST National Institute for Standards and Technology

OQA operational quality attribute

OSATE Open Source AADL Tool Environment

PCI Peripheral Control Interface

PEO AVN Program Executive Office Aviation

POC proof of concept

RMA Rate Monotonic Analysis

RT real time

RTSCE real-time, safety-critical, embedded

SAE Society of Automotive Engineers

SAVI System Architecture Virtual Integration

SEI Software Engineering Institute

SLOC source lines of code

SWCET stall-induced worst-case execution time

64 | CMU/SEI-2012-TR-005

Acronym Definition

VHDL VHSC Hardware Design Language

VHSIC Very High Speed Integrated Circuit

VUV Virtual Upgrade Validation

WCET worst-case execution time

65 | CMU/SEI-2012-TR-005

Bibliography

URLs are valid as of the publication date of this document.

[Apollo n.d.]
Apollo Software Publishing. AirBus Fly-by-wire – How it Really Works. n.d.
http:// www.apollosoftware.com/products/FlyByWire/FlyByWire_english.pdf
(Accessed on November 11, 2011.)

[Apple 2005]
Apple Support Communities, jazzman40. iTunes Crashes When Ripping.
http://discussions.apple.com/thread.jspa?messageID=1235236& (2005).

[Bell 1971]
Bell, C. G. & Newell, A. Computer Structures: Readings and Examples. McGraw-Hill Book
Company, 1971.

[Barbacci 1995]
Barbacci, Mario, Klein, Mark H., Longstaff, Thomas A., & Weinstock, Charles B. Quality
Attributes (CMU/SEI-95-TR-021). Software Engineering Institute, Carnegie Mellon University,
1995. http://www.sei.cmu.edu/library/abstracts/reports/95tr021.cfm

[Boydston 2009]
Boydston, Alex & Lewis, William. “Qualification and Reliability of Complex Electronic
Rotorcraft Systems.” Army Helicopter Society System Engineering Meeting, U.S. Army Aviation
Engineering Directorate (AED), Aviation and Missiles Research, Development and Engineering
Center (AMRDEC), October 2009.

[Budhiraja 1992]
Budhiraja, N., Marzullo, K., Schneider, F. B., & Toueg, S. “Primary-Backup Protocols: Lower
Bounds and Optimal Implementation,” 187-198. Proceedings of the 3rd IFIP Conference on
Dependable Computing for Critical Applications. Mondello, Italy, September 1992. Springer-
Verlag, 1992.

[Casteres 2008]
Casteres, Jean, Callaud, Jean-Marie, & Gaudaire, Stéphane. “Technology Evolution of Aircraft
Simulator for Real Equipments Validation,” 5. Proceedings of the 4th European Congress on
Embedded Real-time Software (ERTS 2008). Toulouse, France, January–February, 2008. Societe
des Ingenieurs de l’Automobile, 2008. Available through
http://www.sia.fr/dyn/publications_detail.asp?codepublication=R-2008-01-3B02

[Cervin 2006]
Cervin, A., Årzén, K.-E. & Henriksson, D. “Control Loop Timing Analysis Using TrueTime and
Jitterbug,” 1194-1199. Proceedings of the 2006 IEEE Conference on Computer Aided Control
Systems Design (CACSD). Munich, Germany, October 2006. IEEE, 2006.

66 | CMU/SEI-2012-TR-005

[Clements 2001]
Clements, Paul, Kazman, Rick, & Klein, Mark. Evaluating Software Architectures: Methods and
Case Studies. Addison-Wesley, 2001.

[Conquet 2008]
Conquet, E. “ASSERT: A Step Towards Reliable and Scientific System and Software
Engineering.” Proceedings of the 4th European Congress on Embedded Real Time Software
(ERTS 2008). Toulouse, France, January–February 2008. Available through “Proceedings” at
http://www.erts2008.org/

[de Niz 2006]
de Niz, Dionisio & Rajkumar, Raj. “Partitioning Bin-Packing Algorithms for Distributed Real-
Time Systems.” International Journal of Embedded Systems: Special Issue on Design and
Verification of Real-Time Embedded Software 2, 3/4 (2006), 196-208.

[de Niz 2008a]
de Niz, Dionisio. “Architectural Concurrency Equivalence with Chaotic Models,” 57-67.
Proceedings of the 5th International Workshop on Model-based Methodologies for Pervasive and
Embedded Software (MOMPES2008). Budapest, Hungary, April 2008. IEEE, 2008.
http://doi.ieeecomputersociety.org/10.1109/MOMPES.2008.10

[de Niz 2008b]
de Niz, Dionisio & Feiler, Peter. “On Resource Allocation in Architectural Models,” 291-297.
Proceedings of the 11th IEEE International Symposium on Object/Service-Oriented Real-Time
Distributed Computing. Orlando, FL (USA), May 2008. IEEE, 2008.

[de Niz 2009]
de Niz, Dionisio & Feiler, Peter. “Verification of Replication Architectures in AADL,” 365-370.
Proceedings of the 14th IEEE International Conference on Engineering of Complex Computer
Systems (ICECCS09), UML&AADL Workshop. Potsdam, Germany, June 2009. IEEE, 2009.
http://doi.ieeecomputersociety.org/10.1109/ICECCS.2009.18

[Delange 2008]
Delange, J., Hugues, J., Pautet, L., & Zalila, B. “Code Generation Strategies from AADL
Architectural Descriptions Targeting the High Integrity Domain.” Proceedings of the 4th
European Congress on Embedded Real-time Software (ERTS 2008). Toulouse, France, January–
February, 2008. Available through “Proceedings” at http://www.erts2008.org/

[Delange 2009a]
Delange, Julien, Pautet, Laurent, & Feiler, Peter. “Validating Safety and Security Requirements
for Partitioned Architectures,” Proceedings 14th International Conference on Reliable Software
Technologies (RTS2009)—Ada Europe. Brest, France, June 2009. Lecture Notes in Computer
Science 5570, Springer, 2009. http://julien.gunnm.org/data/publications/article-dpf-rst09.pdf

[Delange 2009b]
Delange, Julien, Pautet, Laurent, Plantec, Alan, Kerboeuf, Yves, Singhoff, Frank, & Kordon,
Fabrice. “Validate, Simulate, and Implement ARINC653 Systems,” 31-44. Proceedings of the

67 | CMU/SEI-2012-TR-005

ACM SIGAda Annual International Conference on Ada and Related Technologies. St. Petersburg,
FL (USA), November 2009. ACM, 2009.

[Douglass 2003]
Douglass, Bruce Powel. Real-Time Design Patterns: Robust Scalable Architecture for Real-Time
Systems. Addison-Wesley, 2003.

[Feiler 1998]
Feiler, Peter H. Upgrading Avionics Systems: A Case Study. DARPA EDCS Project Report, June
1998.

[Feiler 2004]
Feiler, Peter H., Gluch, David P., Hudak, John, & Lewis, Bruce A. “Pattern-Based Analysis of an
Embedded Real-time System Architecture.” Proceedings of IFIP World Computer Congress -
Workshop on Architecture Description Languages (WADL04), 176/2005. Toulouse, France,
August 2004. Springer, 2004.

[Feiler 2006]
Feiler, Peter H., Gluch, David, & Hudak, John. The Architecture Analysis and Design Language
(AADL): An Introduction (CMU/SEI-2006-TN-011). Software Engineering Institute, Carnegie
Mellon University, 2006. http://www.sei.cmu.edu/library/abstracts/reports/06tn011.cfm

[Feiler 2007a]
Feiler, Peter H. & Hansson, Jőrgen. Flow Latency Analysis with the Architecture Analysis and
Design Language (AADL) (CMU/SEI-2007-TN-010). Software Engineering Institute, Carnegie
Mellon University, 2007. http://www.sei.cmu.edu/library/abstracts/reports/07tn010.cfm

[Feiler 2007b]
Feiler, Peter H. & Rugina, Ana. Dependability Modeling with the Architecture Analysis and
Design Language (AADL) (CMU/SEI-2007-TN-043). Software Engineering Institute, Carnegie
Mellon University, 2007. http://www.sei.cmu.edu/library/abstracts/reports/07tn043.cfm

[Feiler 2008a]
Feiler, Peter H. & Hansson, Jőrgen. “Impact of Runtime Architectures on Control System
Stability.” Proceedings of the 4th European Congress on Embedded Real-time Software (ERTS
2008). Toulouse, France, January–February, 2008. Available through “Proceedings” at
http://www.erts2008.org/

[Feiler 2008b]
Feiler, Peter H. & de Niz, Dionisio. ASSIP Study of Real-Time Safety-Critical Embedded
Software-Intensive System Engineering Practices (CMU/SEI-2008-SR-001). Software
Engineering Institute, Carnegie Mellon University, 2008.
http://www.sei.cmu.edu/library/abstracts/reports/08sr001.cfm

[Feiler 2008c]
Feiler, Peter H. “Efficient Embedded Runtime Systems through Port Communication
Optimization.” Proceedings of the 13th IEEE International Conference on Engineering of

68 | CMU/SEI-2012-TR-005

Complex Computer Systems (ICECCS08), UML&AADL Workshop. Belfast, Northern Ireland,
April 2008. IEEE, 2008. http://doi.ieeecomputersociety.org/10.1109/ICECCS.2008.20

[Feiler 2009a]
Feiler, P. H., Hansson J., de Niz, D., & Wrage L. System Architecture Virtual Integration: An
Industrial Case Study (CMU/SEI-2009-TR-017). Software Engineering Institute, Carnegie
Mellon University, 2009. http://www.sei.cmu.edu/library/abstracts/reports/09tr017.cfm

[Feiler 2009b]
Feiler, Peter H. “Challenges in Validating Safety-Critical Embedded Systems.” Proceedings of
SAE International AeroTech Congress. Seattle, WA (USA), November 2009. SAE International,
2009. http://papers.sae.org/2009-01-3284/. Also a most outstanding SAE Technical Paper of 2010
in SAE International Journal of Aerospace 3, 1 (December 2010):109-116. Available through
http://saeaero.saejournals.org/content/3/1/109.full.pdf+html

[Feiler 2010]
Feiler, Peter H. “Model-Based Validation of Safety-Critical Embedded Systems,” 1-10.
Proceedings of IEEE Aerospace Conference. Big Sky, MT (USA), March 2010. IEEE, 2010.
http://dx.doi.org/10.1109/AERO.2010.5446809

[GAO 2008]
General Accounting Office. Report to Congressional Committees. “DOD’s Goals for Resolving
Space Based Infrared System Software Problems Are Ambitious” (GAO-08-1073). September
2008. http://www.gao.gov/new.items/d081073.pdf

[Hansson 2008]
Hansson, Jőrgen, Feiler, Peter H., & Morley, John. “Building Secure Systems Using Model-Based
Engineering and Architectural Models.” CrossTalk: The Journal of Defense Software Engineering
(September 2008): 10-14.

[HOC 2001]
“The History of Computing Project.” History of the Internet.
http://www.thocp.net/reference/internet/internet2.htm (2001).

[Hugues 2008]
Hugues, J., Pautet, L., Zalila, B., Dissaux, P., & Perrotin, M. “Using AADL to Build Critical
Real-Time Systems: Experiments in the IST-ASSERT project.” Proceedings of the 4th European
Congress on Embedded Real-Time Software (ERTS 2008). Toulouse, France, January–February,
2008. Available through “Proceedings” at http://www.erts2008.org/

[Jackson 2007]
Jackson, Daniel, Thomas, Martyn, & Millet, Lynette I., eds. Software for Dependable Systems:
Sufficient Evidence? Committee on Certifiably Dependable Software Systems, National Research
Council. National Academic Press, 2007. ISBN: 0-309-10857-8.

69 | CMU/SEI-2012-TR-005

[Klein 1993]
Klein, Mark, Ralya, Thomas, Pollak, Bill, Obenza, Ray, & Gonzalez Harbour, Michael. A
Practitioner’s Handbook for Real-Time Analysis: Guide to Rate-Monotonic Analysis for Real-
Time Systems. Springer, 1993.

[LaCerte 2007]
LaCerte, Yves. “FPGAs: High Assurance through Model Based Design.” AADL Workshop.
January 2007. Rockwell-Collins, 2007. http://aadl.sei.cmu.edu/aadl/documents/Rockwell_FPGA-
AADL_Jan2007.pdf

[Leveson 2004]
Leveson, Nancy. “The Role of Software in Spacecraft Accidents.” AIAA Journal of Spacecraft
and Rockets, 41, 4 (July 2004): 564-575. http://sunnyday.mit.edu/papers/jsr.pdf

[Li 2003]
Li, Allen. “Testimony by Allen Li, Director, Acquisition and Sourcing Management, U.S. General
Accounting Office, to the House Subcommittee on Tactical Air and Land Forces, Committee on
Armed Services.” U.S. General Accounting Office, April 2003.
http://www.gao.gov/new.items/d03603t.pdf

[Miller 2005]
Miller, Steve P., Wallen, Mike W., O’Brien, Dan, Heimdahl, Mats P., & Joshi, Anjali. A
Methodology for the Design and Verifications of Globally Asynchronous/Locally Synchronous
Architectures (Technical Report NASA/CR-2005-213912). NASA, 2005.

[Mohan 2009]
Mohan, Sibin, Nam, Min-Young, Pellizoni, Rodolfo, Sha, Lui, Bradford, Richard, & Fliginger
Shana. “Rapid Early-Phase Virtual Integration,” 33-44. Proceedings of 30th IEEE Real-Time
Systems Symposium. Washington, DC, December 2009. IEEE, 2009.

[Nam 2009]
Nam, M.-Y., Pellizzoni, R., Sha, L., & Bradford, R. M. “ASIIST: Application Specific I/O
Integration Support Tool for Real-Time Bus Architecture Designs,” 11-22. Proceedings of the
14th IEEE International Conference on Engineering of Complex Computer Systems (ICECCS
2009). Potsdam, Germany, June 2009. IEEE, 2009. http://dx.doi.org/10.1109/ICECCS.2009.31

[NASA 2009a]
Dvorak, Daniel L. NASA Study on Flight Software Complexity (Technical Report NASA/CR-
2005-213912). NASA Office of Chief Engineer Technical Excellence Program, March 2009.

[NASA 2009b]
Gluch, Dave & Feiler, Peter. A Practice Framework for Model-based Analysis with AADL
(Technical Report MAC-T IVV-09-020). NASA, February 2009.

[SAE 1996]
SAE International Aerospace Division. Guidelines and Methods for Conducting the Safety
Assessment Process on Civil Airborne Systems and Equipment (Aerospace Recommended
Practice ARP4761). SAE International, 1996. http://standards.sae.org/arp4761

70 | CMU/SEI-2012-TR-005

[SAE 2004]
SAE International. Architecture Analysis and Design Language 1 (SAE Document AS-5506).
SAE International, 2004. (See v2.0 listing, [SAE 2009])

[SAE 2006]
SAE International. Architecture Analysis & Design Language (AADL) Annex 1.0 (SAE Document
AS-5506/1). SAE International, 2006. http://standards.sae.org/as5506/1

[SAE 2009]
SAE International. Architecture Analysis and Design Language 2.0 (SAE Document AS-5506A).
SAE International, 2009. http://standards.sae.org/as5506a

[SAE 2011]
SAE International. Architecture Analysis & Design Language (AADL) Annex 2 (SAE Document
AS-5506/2), SAE International, 2011. http://standards.sae.org/as5506/2

[SEI 2009a]
Software Engineering Institute. Training Course: Modeling System Architectures Using AADL.
Carnegie Mellon University, 2009. http://www.sei.cmu.edu/training/p72.cfm

[SEI 2009b]
Software Engineering Institute. Open Source AADL Tool Environment. Carnegie Mellon
University, 2009. http://www.aadl.info

[Singhoff 2005]
Singhoff, F., Legrand, J., Nana, L., & Marcé, L. “Scheduling and Memory Requirement Analysis
with AADL.” ACM SIGAda Ada Letters 25, 4 (November 2005): 1-10. ISSN:1094-3641.

[Sokolsky 2006]
Sokolsky, Oleg, Lee, Insup, & Clarke, Duncan. “Schedulability Analysis of AADL Models.” 20th
IEEE International Parallel & Distributed Processing Symposium (IPDPS 2006). Rhodes Island,
Greece, April 2006. IEEE, 2006. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1639421

[Sokolsky 2009]
Sokolsky, Oleg, Lee, Insup, & Clarke, Duncan. “Process-Algebraic Interpretation of AADL
Models,” 222-236. 14th International Conference on Reliable Software Technologies - Ada-
Europe’2009 (Ada-Europe 2009). Brest, France, June 2009. ACM, 2009.

[Thiele 2000]
Thiele, L., Chakraborty, S., & Naedele, M. “Real-Time Calculus for Scheduling Hard Real-Time
Systems,” 101-104. Proceedings of the 2000 IEEE International Symposium on Circuits and
Systems (ICSAS 2000). Geneva, Switzerland, May 2000. IEEE, 2000.
http://dx.doi.org/10.1109/ISCAS.2000.858698

[Tri-Pacific 2011]
Tri-Pacific Software, Inc. RAPID RMA: The Art of Modeling Real-Time Systems, 2011.
http://www.tripac.com/rapid-rma

71 | CMU/SEI-2012-TR-005

[Wikipedia 2006]
Wikipedia. ARINC653 (Avionics Application Standard Software Interface).
http://en.wikipedia.org/wiki/ARINC_653 (2006).

[Wikipedia 2008]
Wikipedia. Qantas Flight 72. http://en.wikipedia.org/wiki/ Qantas_Flight_72 (2008).

[Wikipedia 2010]
Wikipedia. Ariane 5 Flight 501. http://en.wikipedia.org/wiki/ Ariane_5_Flight_501 (2010).

[Zakon 1993]
Zakon, Robert. Hobbes’ Internet Timeline 10.1,
1993.http://www.zakon.org/robert/internet/timeline/

72 | CMU/SEI-2012-TR-005

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments
regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington
Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to
the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY

(Leave Blank)

2. REPORT DATE

June 2012

3. REPORT TYPE AND DATES
COVERED

Final

4. TITLE AND SUBTITLE

A Virtual Upgrade Validation Method for Software-Reliant Systems

5. FUNDING NUMBERS

FA8721-05-C-0003

6. AUTHOR(S)

Dio de Niz, Peter Feiler, David P. Gluch, Lutz Wrage

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

CMU/SEI-2012-TR-005

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

HQ ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

ESC-TR-2012-005

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS

12B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)
This report presents a Virtual Upgrade Validation (VUV) method to improve design quality and confidence in qualification through testing
for military systems impacted by computer platform changes. This approach uses architecture-centric, model-based analysis to identify
system-level problems early in the upgrade process to complement established test qualification techniques. For purposes of this report,
the authors focus on changes to the computer platform consisting of processors, network, operating system, and runtime infrastructure.
They describe the VUV method steps and introduce the Architectural Dependencies Catalog that provides guidance for modelers on
which aspects of the system to model and how to model them. The report also provides a history and overview of the Architecture
Analysis and Design Language standard, which is used with the VUV method.

14. SUBJECT TERMS

virtual integration, AADL, embedded system architecture, real-time, safety-critical

15. NUMBER OF PAGES

84

16. PRICE CODE

17. SECURITY CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18

298-102

	Executive Summary
	Abstract
	1 Background
	2 Introduction
	3 Challenges in Software-Reliant System Upgrades
	4 Virtual Upgrade Validation (VUV): Method Overview
	5 Application of VUV by Example
	6 Architectural Dependencies Catalog
	7 AADL Modeling and Analysis Strategies
	8 Broader Applicability
	9 Conclusion
	Appendix: Modeling with the SAE AADL
	Glossary of Acronyms
	Bibliography

